

Wire-Mesh Sensor Data
Processing Software

User Manual and Software Description

Institute of Fluid Dynamics

Helmholtz-Zentrum Dresden-Rossendorf

01314 Dresden, Germany

M. BEYER, L. SZALINSKI, E. SCHLEICHER, C. SCHUNK

Date: 05/11/2018

Version: 1.3 pre

The present manual contains software and data file descriptions for software

modules allowing to process, evaluate and display data of wire-mesh sensor

electronics. The described modules run as stand-alone command line programs or

can be integrated into the "WMS Framework" delivered with the wire-mesh sensor

electronics.

WMS-Software User Manual

2

1 General remarks .. 4

2 FAQ ... 5

3 Theoretical basis .. 6

3.1 Data calibration and calculation of void fractions for conductivity-based

measurements (*.mes) .. 6

3.2 Data calibration and calculation of volumetric phase fractions for capacitance based

measurement data (*.ces) .. 9

3.3 Void fraction profiles ... 12

3.4 Bubble identification .. 15

3.5 Bubble property analysis ... 16

3.6 Bubble size distribution ... 18

3.7 Mixtures ... 19

4 Handling of the Wire Mesh Sensor Framework ... 21

4.1 The Wire Mesh Sensor Framework .. 21

4.2 Main Window ... 21

4.3 Welcome Screen .. 23

4.4 Project Tree .. 23

4.5 Project Wizard ... 25

4.6 Project Notes ... 30

4.7 Applying modules .. 31

4.8 Node views .. 31

4.9 Plot2D view ... 33

4.10 Slice view ... 34

4.11 3D Voxel view ... 35

4.12 Table view.. 36

4.13 Batch Processor ... 37

5 Modules for the Wire Mesh Sensor Framework... 39

5.1 General remarks ... 39

5.2 FileConverter module, converts raw measurement files into single sensor files 39

5.3 Geo & GeoAdv module, generation of geometry configuration files 41

5.4 Void module, calibration and void fraction distributions .. 42

5.5 CapVoid Module .. 45

5.6 CapVoid2 Module .. 45

5.7 Velocity Module, calculation of the averaged local gas velocities 46

WMS-Software User Manual

3

5.8 BubIdent Module, identification and labelling of single bubbles 47

5.9 BubProp Module, bubble property analysis ... 48

5.10 BubSizeDis Module, Calculation of Bubble size distributions..................................... 50

5.11 MixCalib Module, calibrate mixing measurements .. 51

5.12 MixCond Module, calculation the conductivity of a mixture 52

5.13 MixRatio Module, calculating mixing ratios .. 52

5.14 Tansform module, applying various transform operations ... 53

5.15 Trim Module, trimming the size of files .. 54

5.16 FixUp Module, fixing faulty pixels .. 54

5.17 NRemoval Module ... 56

5.18 Reduce Module, reduces multiple frames to a single frame .. 56

5.19 ImageMaker module .. 57

5.20 OptFlow module ... 57

5.21 Histogram Module ... 58

6 Editors of the Wire Mesh Sensor Framework ... 60

6.1 SEI Editor ... 60

6.2 Mask Editor ... 61

7 Internal Data Formats .. 65

7.1 Module Information Files .. 65

7.2 Editor Information files ... 69

7.3 Template information files .. 69

7.4 Template Script Files .. 71

7.5 Command Reference .. 72

7.6 Examples .. 77

7.7 Readable File Formats .. 78

8 Summery .. 81

9 References .. 82

WMS-Software User Manual

4

1 General remarks

The actual software package described hereby can be used for the data analysis of

wire-mesh sensor data files produced by SGITT-100 and WMS200 devices. In the last

decade, a comprehensive set of software algorithms have been developed at Helmholtz-

Zentrum Dresden-Rossendorf for wire-mesh sensor data processing. These algorithms

comprise tools for reorganization of the data, extraction of single sensors’ data from a

matrix, calibration routines, calculation of void fractions, void fraction profiles, bubble

velocities, bubble size distributions etc. Since the sensor geometries, installation

situations, measurement conditions etc. vary widely, not all algorithms can be used

for any case. Thus, for instance, bubble velocity calculation is very difficult or even

impossible in horizontal stratified flows from wire mesh sensor data. Therefore, the

usage of the software algorithms always requires an experienced user with some

profound knowledge on multiphase flows. Up to the calculation of so called void files

(*.v) the algorithms are universal. Other tools like velocity calculations, bubble size

distributions or interfacial area calculations require special sensor configurations or

special flow situation and are not included in the basic package. These tools are

available on demand and might need adoption to the special user purpose.

The use of the software package is at your own risk. HZDR covers no warranty for

the calculated results or damage to any system due to the use of the software package.

WMS-Software User Manual

5

2 FAQ

• I got an “OpenGL/GLSL: Unable to compile vertex/fragment shader.” error message

when I try to run the application. What can I do?

o Please make sure you have installed the latest graphics driver and your

graphics card supports at least OpenGL 2.1. The implementation

conformance for OpenGL varies from driver to driver.

• Running the geometry module is very slow on my computer. The geometry files

generation should take only a few seconds. What can I do to make it faster?

o Make sure the output directory isn't a network drive. A local hard drive

is much faster.

• I don't have an internet connection where I installed the Wire Mesh Sensor

Framework software. How can I get a registration key?

o Just copy the content of the organization/name field and the machine id

to an USB stick and use an internet-capable computer to send it to the

license registration: license@hzdr-innovation.de. It’s also possible to take

a screenshot or make a photo of the registration dialog. At least three

information are needed to finalize the registration process: The used

software, a licensee name and the machine identifier.

• The software crashes right after the start-up with a runtime error. What causes

this?

o These errors are hard to reproduce and occur in very rare cases. We

discovered that these issues are most likely connected to buggy graphics

drivers and how Qt handles OpenGL contexts. Mostly multi monitor

setups with Intel graphics cards seem to be affected by this issue.

Currently there is no real solution for this kind of problem. Sometimes a

driver update seems to work.

• I need a new feature! How to submit a proposal?

o Please send a message to the software support. E-mail to

c.schunk@hzdr.de (Christoph Schunk) or license@hzdr-innovation.de.

• I've found a bug in the software! I need a fix!

o Please send a message to the software support. E-mail to

c.schunk@hzdr.de (Christoph Schunk) or license@hzdr-innovation.de.

mailto:license@hzdr-innovation.de
mailto:c.schunk@hzdr.de
mailto:license@hzdr-innovation.de
mailto:c.schunk@hzdr.de
mailto:license@hzdr-innovation.de

WMS-Software User Manual

6

3 Theoretical basis

In this chapter, we will discuss the theoretical background of the measurement system

and how the acquired data is saved and processed.

Raw measurement data of the wire-mesh sensor system is saved in a binary format.

Assume a sensor of 64 x 64 wires and a measurement of 10 s length with a frame rate

of 2500 Hz. For such a sensor, the measurement data is saved as a sequence of 25,000

“frames”, each frame consisting of 64 x 64 = 4096 data values, and each 12-bit deep.

The signal is a proportional measure of each crossing-point’s electrical conductivity.

The following sections describe how the raw data will be further processed to obtain

a set relevant two-phase flow parameters.

Important Note: In thermal fluid dynamics the volumetric void fraction (gas, steam) is

often designated with the symbol , this nomenclature is also used in

all software modules for temporal or cross sectional averaged void

fraction profiles. In electrical engineering, the symbol stands for the

dielectric permittivity of a medium. To avoid misunderstandings,

especially in equations related with the capacitance type of WMS, in

chapter 3.1 and 3.2 the more general phase fraction designator has

been used instead. In all further equations is used again, to match

with the module output parameters.

3.1 Data calibration and calculation of void fractions for
conductivity-based measurements (*.mes)

The purpose of this procedure is the conversion of the sensor raw signals from the

*.mes data files obtained from the WMS200 measurement system into volumetric gas

fractions. For this, two procedures can be used:

Water calibration method

The measured values of the two-phase flow can be weighted with calibration values

of a pure water flow, since the electrical conductivity of air is negligibly small, the local

instantaneous void (gas) fraction is then given by

−

= = −

W meas meas

, , , , ,

, , W W

, ,

1
i j i j k i j k

i j k

i j i j

U U U

U U
 (3.1)

with

, ,i j k

 the local instantaneous volumetric void fraction,

W

,i j
U the time averaged sensor signals of a calibration measurement (water) and

meas

, ,i j k
U the local instantaneous sensor signal of the measured value.

WMS-Software User Manual

7

For the determination of the calibration values for the individual mesh points of the

sensor, the data in the calibration file are checked to be free of gas. Afterwards, the

signals of the gas free frames are averaged. This method offers the advantage, that it

can be applied to all measurement data independent from the superficial gas velocity.

The disadvantage consists of the fact that calibration files must be obtained, which is

usually done with some temporal shift to the actual measurements. Varying operating

conditions (pressure, temperature, conductivity of the water) can thus lead to errors.

Histogram calibration method

On the other hand, there is the possibility to do a histogram calibration. With this

method histograms of the digitized voltage signals of all frames of a measurement file

are numerically analysed for each mesh point of the sensor. The histograms usually

have two maxima. One maximum lying close to the zero value stands for the gas value,

a second maximum for the water value.

Figure 1: Histogram of the mesh point 43 x 43 for a selected measuring point

This second maximum is used as calibration value for the current mesh point. Figure

1 shows exemplary a histogram for a test point (e. g. W G
1.02m/s, 0.53m/sj j= =).

There are advantages and disadvantages of this method. The substantial advantage is

the determination of the calibration values directly from the measurement data. Errors

by changing the boundary conditions are minimised with this method. A

disadvantage of the histogram calibration results from the limitation in the volumetric

gas content, i. e. at high gas volume fraction only few values for pure liquid are

available (in which the measurement volume around the mesh point is totally filled

with water). Another example is stratified horizontal flow. In such a case, no clear

water maximum can be determined in the histogram for each crossing point and the

histogram calibration gives an incorrect calibration value. In order to be able to use the

advantages of this method, the calculated matrix composed of calibration values is

azimuthally averaged for each test point and the radial profiles are checked.

Figure 2 shows two radial profiles of calibration values for two measurement points

in green and red, respectively. The green curve describes an almost ideal calibration

profile and confirms the applicability of the method for this measuring point. This

curve remains approximately constant for a long distance from the pipe centre (0r =)

WMS-Software User Manual

8

and only drops steeply directly at the sensor boundary. On the contrary, the red

calibration profile goes down in the centre. This curve shows that in the centre of the

flow no correct calibration values can be obtained. At the mesh points in the centre of

the pipe, there are hardly any frames with pure water in the measurement data

according to a high superficial gas velocity. Thus, the histogram calibration method

can never be used for stratified or annular flows.

Figure 2: Comparison of radially averaged calibration profiles for two measuring points

(jW = 1.02 m/s, jG = 0.53 m/s - green and jW = 0.4 m/s, jG = 3.2 m/s - red); histogram

calibration

The decrease in the calibration profiles at the edge of the wire-mesh sensor results from

a nonlinearity in the measurements coming from the proximity of the mesh points to

the electrically grounded pipe wall. An additional reason for this effect is that many of

the measurement volumes are smaller for the mesh points at the edge of the sensor

than the standard volume on the inside (cp. Figure 4).

Therefore, it is recommended that the calibration of the measurement data is

accomplished in the following steps:

1. Compute radial calibration profiles for all data sets by histogram calibration

2. Check radial calibration profiles for having no radial dependencies except a

steep decrease at sensors boundary; beginning at the test points with high

superficial gas velocities

3. Depending on the quality of the calibration profiles select the measurements

with unsatisfactory results and repeat the calibration using calibration files.

The results of the calibration are stored in the form of an ASCII file (*.uw), which

contains the calibration values for each mesh point as a matrix. In addition, the radial

calibration profiles (*.uwrad_80) are available after successful histogram calibration.

With the help of this calibration matrix, the values for the volumetric void fraction are

computed from the measurement data by equation 3.1 with the software Void module

(user instructions see section 5.4). Due to the presence of signal noise in the

WMS-Software User Manual

9

measurement data the calculated volumetric void fraction is filtered before further

processing. In order to be able to distinguish small real signals from the signal noise a

special filter is used. This filter considers the void fraction values of the surrounding

mesh points. That means before a value of the void fraction , ,i j k

(i, j are the indices of

the grid points in the measurement plane and k is the number of the frame), which is

smaller than the threshold of the filter (e. g. 20%), is set to zero, the filter analyses the

environment of this void fraction value. Only if all 26 surrounding values are also

below the threshold the void fraction , ,i j k

 is set to zero. If this condition does not

apply, then it can be assumed that the measurement signal belongs to the edge region

of a bubble. In this case, the measured value remains unchanged.

The threshold of the noise filter (calculated by the software e.g. 10%) theoretically

restricts the sensitivity of the wire-mesh sensor used here to a minimum equivalent

diameter of 3 mm related to the bubble size. This is the most unfavourable case, if the

gas bubble goes through the measurement plane of the sensor in such a way that it

begins to cut four measurement volumes equally. In reality the wire-mesh sensor,

however, still registers most of these bubbles, since the probability that a bubble

penetrates the sensor exactly symmetrically between four wire electrodes and thus

producing a void fraction less than the threshold in all of the four measurement

volumes is very small. With further decreasing of the bubble size also the probability,

that the bubble is still recorded by the sensor, decreases.

After filtering, the void fraction is limited to 0% and 100%, respectively. The data are

saved in byte-format in a binary file with the extension *.v successively for each frame

of the measurement. For numerical reasons, these files also contain values for points,

which are outside of the circular measurement cross-section. These points are marked

with the number 255.

3.2 Data calibration and calculation of volumetric phase fractions
for capacitance based measurement data (*.ces)

Since the raw data of the capacitance based measurement system “CapWMS200” are

logarithmic scaled and the measured values for gas only measurements are not zero

as for the conductivity based system the calibration and phase fraction calculation is a

little more complicated. The different steps are described in the following sections.

Calibration and calculation of local instantaneous relative permittivity values

It can be shown [1] that the measured logarithmic values can be noted in form of a

logarithmic linear function of the capacitance and thus the local permittivity in the

crossing points of the wire-mesh sensor.

 = −LOG ln()V a b (3.2)

WMS-Software User Manual

10

with the parameters a and b containing all variables in local geometry, variations in

electronic components as well as gain and offset settings of the data acquisition system.

Hence, the local instantaneous permittivities
m

 of each sampling point , ,i j k is

calculated from the measured local instantaneous voltages LOG

, ,i j k
V as

 −
 =

LOG

, , ,

, ,

,

exp .
i j k i j

i j k

i j

V b

a
 (3.3)

In order to obtain the two parameters
,i j

a and
,i j

b these values can be pre-calculated

from two calibration data matrices H

,i j
V and L

,i j
V with known permittivity values

L

and
H

 . H

,i j
V and L

,i j
V are the temporal averaged cross sections of the calibration input

data:

−

=

=
1

L LOG,L

, , ,
0

1 N

i j i j k
k

V V
N

 (3.4)

and

−

=

=
1

H LOG,H

, , ,
0

1 N

i j i j k
k

V V
N

 (3.5)

The input data (LOG,L

, ,i j k
V) can be obtained by covering the whole sensor with the low

permittivity substance. For the high calibration input data (LOG,H

, ,i j k
V), the substance with

high permittivity is used to cover the sensor. With these calibration matrices, the two

parameters
,i ja and

,i jb can now be calculated by

−
=

−

H L

, ,

,

H L
ln() ln()

i j i j

i j

V V
a (3.6)

and

−
=

−

L H

, ,

,

H L

() ()

ln() ln(

ln

)

ln
i j H i j L

i j

V V
b (3.7)

For further details, please cp. [1]

Phase fraction calculation

In order to calculate the volumetric phase fractions of a two-phase mixture, several

dielectric mixing models have been developed [1]. These models are based on different

assumptions onto how the two phases are geometrically distributed. The most widely

used model is the parallel model, which is the only model implemented in the classical

CapVoid module. Furthermore, the CapVoid2 module supports several additional

models.

WMS-Software User Manual

11

For better understanding of the used models, we will describe the used parameters a

little more in detail, where

 is phase fraction of the mixture (0 1),

1
 is the permittivity of the first phase (usually the lower value),

2
 is permittivity the second phase (usually the higher value) and

m

 the measured permittivity of the mixture.

Using these parameters, the parallel model is defined as:

−
=

−

2 m
P

2 1

 (3.8)

The series model is defined as:

−
=

−

1 2 m 1
S

m 2 m 1

 (3.9)

And the logarithmic model is defined as:

−
=

−

2 m
L

2 1

log() log()

log() log()
 (3.10)

The Maxwell-Garnett model is based on spherical inclusions dispersed randomly in a

homogeneous medium. We have two equations here, one for the low permittivity

phase dispersed in the high permittivity phase:

+ −

 =

− +

1

1 m

2 2

M

1 m

2 2

2 1

1 2

 (3.11)

And one for the high permittivity phase dispersed in the low permittivity phase:

+ −

 = −

− +

2

2 m

1 1

M

2 m

1 1

2 1

1

1 2

 (3.12)

Figure 3 shows the permittivity plot for the models described above. The two-phase

mixture consists of oil for the low permittivity value (=
L

2) and water for the high

permittivity value (=
L

80). In Figure 3: Permittivity of a 2-phase mixture of oil

and water for different dielectric mixture models.Figure 3 you can clearly see the

different curves for the permittivity models described above.

WMS-Software User Manual

12

Figure 3: Permittivity of a 2-phase mixture of oil and water for different dielectric mixture

models.

Please have a look at chapter 5.5 to see how the different models are selected in the

CapVoid2 module.

3.3 Void fraction profiles

In order to obtain quantitative information on the flow, a time and spatial averaging

of the void fraction data can be done. These procedures are also contained in the Void

module. Contrary to the void fraction values stored in the v-files, the data used for

averaging are not limited at 0% and 100%.

The averaging is based on weight coefficients that define the contribution of each

crossing point of wires (, i j) in the sensor matrix to the size of the domain, over which

the averaging has to be performed. The definition of the weight coefficients (
, i j

a)

necessary to obtain a cross-section averaged void fraction is shown in Figure 4. The

average can be calculated for each sampling period individually with

 = = , , ,
()

k i j i j k
i j

t a . (3.13)

The result of the data evaluation with equation is a sequence of instantaneous average

volumetric gas fractions, which is available with the full measurement frequency.

These values are stored in a separate file (*.epst).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2 12 22 32 42 52 62 72

o
il

vo
lu

m
e

fr
ac

ti
o

n

mixture permittivity

Mixture Permittivity

Parallel Series

Logarithmic Maxwell-Garnett (oil in water)

Maxwell-Garnett (water in oil)

WMS-Software User Manual

13

Another option is the averaging in time. Two-dimensional averaged void fraction

distributions are computed from

=

=
max

, , ,
1max

1 k

i j i j k
kk

 (3.14)

Figure 4: Weight coefficients for the cross-section averaging of local gas fractions

measured by the wire-mesh sensor

With equations (3.13) and (3.14) an average void fraction for the total measurement

cross-section can be obtained as

=

= =
max

, ,
1max

1 k

i j i j k
i j k

a
k

. (3.15)

Moreover, a radial gas fraction profile can be calculated by averaging the local

instantaneous gas fractions over the measurement period and over a number of ring-

shaped domains (m). The latter is done by

 = , , , ,

max

1
m i j m i j k

k i j

a
k

, (3.16)

where
, ,i j m

a are weight coefficients denoting the contribution of each measurement

point with the indexes ,i j to a ring with the number m (cp. Figure 5). This ring-shaped

averaging domain covers a given radial distance r from the centre of the sensor with

 − sensor sensor

max max

(1)
R R

m r m
m m

, (3.17)

where
max

m is the total number of radial steps (e. g. for DN200 wire-mesh sensors a

value of =
max

80m is recommended) and
sensor

R is the radius of the sensor grid.

WMS-Software User Manual

14

Figure 5: Weight coefficients for the cross-section averaging of local gas fractions over a

number of ring-shape domains

Thus, azimuthally and time averaged gas volume fraction profiles (*.epsrad_80), as well

as the time averaged local gas fractions for each mesh point of the pipe cross-section

(*.epsxy) are available. In the file (*.epst) the cross sectional averaged void fractions for

each time step are stored in two columns. Furthermore, the time and space averaged

gas volume fractions according to equation (3.15) (eps_all.asc) can be used for the

comparison of the individual experiments among themselves.

Gas velocities

The use of a sensor with two measurement planes or two sensors one after another

allows the determination of time and azimuthally averaged gas velocities. To do this,

the signals from both measurement planes are cross-correlated separately for each pair

of mesh points, which are located above each other. For time-discrete series of this

fluctuation components of the local instantaneous void fraction from the first

measurement plane (
1, , ,i j k

) and the second plane (
2, , ,i j k

) of the sensor, the cross-

correlation can be defined as

+

=

1, , , 2 , , ,

, , 2 2

1, , , 2 , , ,

i j k i j k k
k

i j k

i j k i j k
k k

F . (3.18)

The index k corresponds to the time-shift of =
meas

t k f . Fluctuation components

are calculated by subtracting the time-average from the instantaneous value

 = −
, , , , ,i j k i j k i j . The cross-correlation is carried out by means of Fast Fourier

Transformation (FFT). The obtained cross-correlation functions are averaged in

circumferential direction for different radii (m) using the same weight coefficients as

for the calculation of radial gas fraction profiles

WMS-Software User Manual

15

= , , , , ,

max

1
m k i j m i j k

i j

F a F
k

. (3.19)

In the next step, the location of the maximum in the cross-correlation functions

averaged by equation (3.19) is determined. The average gas-phase velocity for the

given radius is calculated from the corresponding time-shift

= =

meas

max

() ()
G G

L
w r w m f

k
. (3.20)

With
max

k corresponding to

=
max, ,

max()
m k m k

F F .

In equation (3.20) L is the axial distance between the two measurement planes. The

technique of averaging the cross-correlation functions before searching for the

maximum has proven to supply more stable velocity values than if the velocities were

directly deduced from the result of a point-to-point cross-correlation according to

equation (3.18).

For the documentation of the evaluation process, the results of the point-to-point cross-

correlation are stored in an ASCII file containing the time averaged velocity for each

crossing point (*.velxy) in a two dimensional matrix. The azimuthally averaged gas

velocities and the middle radii of the m rings are stored in the ASCII files *.vel.

3.4 Bubble identification

The bubble identification and the determination of important characteristics for the

bubbles can be done using special evaluation algorithms. Thereby, a bubble is defined

as a region of connected gas-containing elements in void fraction data
, ,i j k

 which is

completely surrounded by elements containing the liquid phase. To each element

which belongs to one bubble, the same identification number is assigned. Different

bubbles receive different identification numbers. These numbers are stored in the

elements
, ,i j k

b of a second array that is saved in a binary file (32-bit signed integer) of

the type *.b. This array has the same dimension as the void fraction array. After the

bubble recognition algorithm is completed, each element
, ,i j k

b carries the number of

the bubble to which the given element with the indices , ,i j k belongs.

Local instantaneous gas fractions can have values between 100% (gas) and 0% (liquid),

if the corresponding measurement volume formed by two crossing wires contains both

gas and liquid at the same time. Furthermore, signal noise may also lead to such

intermediate values. Consequently, a sharp distinction between elements filled with

gas and elements filled with water is not possible. To recognize the unique bubbles

even under these difficult conditions HZDR implemented a so called recursive

extended decremental fill algorithm. It is based on the idea that the local gas fraction

can only decrease or remain equal if the identification is started at the point of the

WMS-Software User Manual

16

highest gas fraction found inside a bubble. After successful completion of the bubble

detection the results (bubble identification matrix) are saved in the binary file *.b .

3.5 Bubble property analysis

Using the bubble identification matrix together with the information about the void

fraction, now important parameters can be determined for each bubble. They are

stored in text files of the type *.a . It has to be noted that in the code the index i refers

to the serial number of the frames, while j and k , in this case, serve as indices in the

measurement plane. This assignment of the indices is also used in the equations given

in this section.

The volume of a bubble with the number n is obtained by integrating the local void

fraction of all elements owning the given bubble number

 = = , , , , ,
, ,

, , :
b n b i j k i j k

i j k

V x y t w i j k b n . (3.21)

The sum of void fractions is multiplied by the measurement volume, which is the

product of the distance of the electrodes in x and y directions and the sampling period,

as well as the bubble velocity

 =
sample

1
t

f
. (3.22)

Due to the fact that the individual velocity of bubbles is unknown, the gas phase

velocity obtained by cross-correlation is taken as an approximation at the location of the

centre of mass of the given bubble

 () ()= = − + −
2 2

CM, 0 CM, 0
() with

b G n n n n
w w r r x x y y . (3.23)

Here x0 and y0 are the centre coordinates of the wire mesh sensor.

The coordinates of the centre of mass can be obtained by averaging the measurement

coordinates of all elements belonging to the selected bubble using the local void

fraction values as a weight function

= =

= = =

, , , ,
, , , ,

CM, ,

, , , ,
, , , ,

, ,
, ,

CM, , ,

, ,
, ,

;

; , , :

i j k i j k
i j k i j k

n CM n

i j k i j k
i j k i j k

i j k
i j k

n b i j k

i j k
i j k

j x k y

x y

i z

z z w t i j k b n

 (3.24)

WMS-Software User Manual

17

After that, the equivalent diameter of the bubble can be determined, which is defined as the

diameter of a sphere that has the volume according to equation (3.21)

=
,3

,

6
b n

b n

V
D . (3.25)

For the evaluation of asymmetries of the bubble, moments for each bubble are calculated.

Likewise, the void fraction served as weight function

() ()

()

 − −

= =

 −

= = =

2 2

, , CM, , , CM,
, , , ,

, ,

, , , ,
, , , ,

2

, , CM,
, ,

, , ,

, ,
, ,

5 5

;

5

; ; , , :

i j k n i j k n
i j k i j k

x n y n

i j k i j k
i j k i j k

i j k n
i j k

z n b i j k

i j k
i j k

j x x k y y

rm rm

i z z

rm z w t i j k b n

 (3.26)

From the moments for the coordinates x and y in the measurement plane of the wire-mesh

sensor, the radial moment is

 = +2 2

, , ,r n x n y n
rm rm rm . (3.27)

Further information on the distortion of the bubble can be obtained by calculating the

maximum equivalent diameter in the x-y plane. For this matter, the area being

occupied by the bubble in the x-y plane is added. Similar to equation (3.21) the sum of

the local instantaneous void fractions of the measurement volumes belonging to the

bubble is multiplied by the area of the measurement volume in the x-y plane. This

procedure is done for each single sampling time characterised by index i

 = = , , , , , ,
,

, , :
xy n i i j k i j k

j k

A x y i j k b n . (3.28)

Afterwards, the maximum area is found and converted into the diameter of an area equivalent

circle

 ()

= =
, ,max

, , ,max , ,

4
with max

xy n

xy n xy n xy n i

A
D A A . (3.29)

In addition to these bubble characteristics the minimum and maximum coordinates of the

bubbles are determined. For the calculation of these values, it is necessary to define a

threshold value of the gas fraction which represents the bubble interface. Experiences

at HZDR show that for bubble sizes > 20 mm a threshold 50% is a good approximation.

If bubble diameters are smaller this value is reduced to approx. 20%. The maximum of

gas fraction in the bubble (starting at 100% for large bubbles) also reduces with

decreasing bubble diameter. This reduction is observed for bubbles with a diameter

WMS-Software User Manual

18

less than approx. 20 mm. This effect results from the limited spatial resolution of the

wire-mesh sensor which is e. g. 3 x 3 mm. Small bubbles cannot completely fill the

associated measurement volumes. For this reason, maximum gas fractions lower than

100% are observed. Taking these boundary conditions into consideration, as a

compromise, the gas fraction threshold representing the bubble interface is taken as

half of the maximum gas content of the bubble.

Another important parameter for the characterisation of gas bubbles is the volume

fraction of the bubble related to the total volume of the flow

= = =
, G

, all meas meas sensor G

all

; ;b n

b n G

V J
V t f t w A w

V
. (3.30)

Apart from the already mentioned parameters, the maximum gas fraction and the

number of measurement volumes per bubble are determined. All values are stored in

an ASCII file (*.a) as table for each identified bubble.

3.6 Bubble size distribution

After evaluation of the data described in the previous chapters, three-dimensional

distribution of gas fraction as well as characteristic parameters for each single bubble

are available. Additionally, a list with characteristics of each bubble is generated for

each measurement.

The combination of these data makes it possible to obtain bubble size distributions. To

do this, histograms are calculated in which the void fraction per bubble class is

summed. This is done related to the volume equivalent diameter according to equation

as well as related to the area equivalent diameter of the gas bubbles according to

equation (3.25). This information is available in a representation with a linear bubble

class width of 0.25 mm and also for a logarithmically increasing width of the bubble

classes. The smallest bubble size class for the logarithmic representation has a lower

boundary of 0.1 mm. The bubble size distributions are stored in ASCII files with the

extensions *.his_lin and *.his_log, respectively. The linear distributions are preferably

used for the numerical investigations and the logarithmic information for

visualisation.

In both types of bubble size distributions, the void fraction that is related to the bubble

class width is represented by (/
b

D), which gives

=

,max

all
0

bD

b

b

D
D

. (3.31)

In addition, these distributions related to the total gas content (
all

/ /
b

D) are listed

in both files. Furthermore, the files contain the bubble number distributions with

WMS-Software User Manual

19

which the absolute number of bubbles per bubble class is referred to the bubble class

width and the total measurement time.

3.7 Mixtures

Calculating mixtures is done in three steps. A calibration step where a set of calibration

references is used to determine a linear relationship between the measured ADC

values and their corresponding conductivity values. You can use the mixcalib module

to do a calibration. The second step uses the calibration matrices m̂ and n̂ to calculate

a conductivity. The mixcond module is used to calculate the conductivity. The last step

determines the mixing ratio for a given conductivity from a base conductivity and a

tracer fluid. Mixing rations are determined by the mixratio module.

Calibration

Mixtures are modelled using a linear relationship between the conductivity , ,r j k
C and

the measured ADC value , ,r j k
V of the sensor by

 , , , , , ,
V = m C + n

r j k j k r j k j k , (3.32)

where r is the calibration reference and j , k are the measured crossing points. The

parameters ,j k
m and ,j k

n are calculated by using a simple linear regression for each

measurement point.

The regression line is defined as

, , , ,

ˆˆ ˆ ˆV = m C + n
j k j k j k j k

. (3.33)

with

, , , , , ,1

, 2

, , ,1

()()
ˆ

()

N

r j k j k r j k j kr
j k N

r j k j kr

C C V V
m

C C

=

=

− −
=

−

. (3.34)

and

 , , , ,
ˆ ˆn = V - m

j k j k j k j k
C . (3.35)

The variables ,j k
V and ,j k

C are the average of , ,r j k
V and , ,r j k

C .

To have an estimate on how good the linear fitting was, we calculate the coefficient of

determination
,

2

j k
R for each measure point by

WMS-Software User Manual

20

,

2

, , ,2 1

2

, , ,1

ˆ()

()j k

N

r j k j kr

N

r j k j kr

V V
R

V V

=

=

−
=

−

. (3.36)

Values around 0 indicate a low determination and values near 1 indicate a high

determination.

Conductivity Calculation

If the used calibration lead to a satisfying result, the parameters m̂ and m̂ can now be

used to calculate the conductivity for each crossing point by using

, ,

,

,

ˆV n
C =

m̂

j k j k

j k

j k

−
. (3.37)

Mixing Ratio Calculation

The mixing ratio
, ,i j k

 is calculated by using a base reference fluid ,

M

j k
C and a tracer

fluid ,

T

j k
C .

, , ,

, ,

, ,

C
=

C

M

i j k j k

i j k T M

j k j k

C

C

−

−
. (3.38)

The resulting values of
, ,i j k

 range from 0 (no tracer present) and 1 (fluid is completely filled

with tracer).

WMS-Software User Manual

21

4 Handling of the Wire Mesh Sensor Framework
4.1 The Wire Mesh Sensor Framework

The Wire Mesh Sensor Framework has been designed and developed to use the stand-

alone command line-based data processing modules, which have been developed for

batch processing, in a user-friendly GUI environment. The framework allows the user

to use standard file open and file save dialogs and generates an easy assessable

interface to the command line parameters of the single modules. Therefore, for each

module a "module information file" (*.minf) has to be provided. The MINF-file describes

the input and output specifications and the required parameters of corresponding

module. The modules are automatically loaded and registered after the program start-

up. MINF -files can be opened and edited with any text editor. The easiest way to learn

how to write your own modules and MINF -files is to open an existing MINF -file and

study the parameters and its structure. An extensive documentation of the MINF -file

format and other file formats related to the Wire Mesh Sensor Framework can be found

in the Internal Data Formats section (cp. 7.1). In the following, the different sections

of the main window, views and dialog boxes of the framework are described. Terms

from the GUI are printed italic for easy location.

4.2 Main Window

The main window is divided into three major parts. The left side is the project tree

which contains all relevant files like measurement and geometry files. It also contains

all generated intermediate files in a hierarchical structure.

Figure 6: The main window of the Wire Mesh Sensor Framework

WMS-Software User Manual

22

The right side of the main window is the view panel. It shows a visualization of the

selected files in the project tree. Usually, the framework exposes different types of

visualizations for every file. These visualizations can be selected in the register card at

the top of the viewing area. At the start-up, the framework contains only a welcome

screen which is described later in the document.

The third area of the main window is the toolbar and the program menu at the top.

The main menu offers the following functionality:

• File

o New project …: Creates a new empty project. This will trigger the new

project wizard described later in the document.

o Open project …: Opens an existing project from the file system.

o Save project …: Saves the current project to the file system. The

program asks for a file name if it wasn't already saved.

o Save project as …: Saves the project under a new file name.

o Exit: Closes the application. If the project file was modified, the

framework asks to save the file.

• Edit

o Add files...: Adds a list of files to the current node. The selected node

must be a folder or a file node. Imported files are just links to files in in

file system. They are not copied to the project folder.

o Create folder: Creates a new folder in the project tree. These folders are

not saved in the file system.

o Rename node: Changes the name of the current node. Works only for

folders and the project nodes.

o Delete node: Deletes the current node. If there are any existing files in

this node, the framework asks for their deletion.

o Project notes...: Shows a dialog with the project notes and the authors

name.

o Settings: Shows a settings dialog of the wire mesh sensor framework

application. Currently it only contains a list of all installed data

providers.

• Tools

o SEI Editor: Opens the SEI-file editor. A SEI-file defines the layout of a

sensor matrix. See section 6.1 for more information about the SEI-

editor.

o Mask Editor: Opens the mask editor. See section 6.2 for more

information about the mask editor.

o GEO Module: Opens the GEO-file generator module. GEO-files are

used to describe the geometry of a single wire mesh sensor. See section

5.3 for more information about the geo module.

WMS-Software User Manual

23

• Help

o User manual…: Open this user manual.

o About…: Shows the program version and copyright information.

Figure 7: The main toolbar.

The toolbar buttons (Figure 7) are shortcuts to items in the main menu and they

provide the following functionality (from left to right order):

• New project.

• Open project...

• Save project

• Save project as...

• Delete node

• Edit project notes...

• Exit Application

4.3 Welcome Screen

This screen shows a list of recently edited projects. They can be loaded by double

clicking on them.

Furthermore, the welcome view consists of two buttons:

• New project using wizard: Creates a new project using the project wizard.

• Open project from file system: Opens a project from the file system.

4.4 Project Tree
The project tree is a hierarchical representation of the current project. It consists of folders,

file nodes and modules. The project tree uses the following icons for each node:

• Folders: Folders have no special functionality. Folders group files and other

folders. They are not part of the file system.

• Files: Files are imported by the user or generated by a module. A green file

node indicates the existence of a file in file system. An orange node indicates

the non-existence of a file in the file system.

• Module: Represents a single module if more than one module is applied to a

file node. A module node is always a sub-node of a file node.

• File/Module: This node represents a file with a single module applied to it.

Multiple node applications are represented by module sub-notes under a file

node.

WMS-Software User Manual

24

Figure 8: The project tree consisting of several imported and generated files.

By left clicking on the tree view a context menu with the following operations can be

opened:

• Create file(s): Creates a file or a set of files using an editor or a module. This

works for folder or root nodes only. With this option, new sensor information

files or geometry files can be created.

• Apply module...: Applies a module to a file node (works for file nodes only).

• Rename Node: Renames the node (works for folders and root nodes only).

• Delete Node: Deletes the selected node. If the selected node is a file node it

asks for the deletion of the file itself. This operation cannot be undone! (works

for all nodes accept the root node).

• Copy Node: Copies a node. For file nodes only the link is copied not the file

itself (works for folders and file nodes).

• Paste node: Pastes a copied node (works for file and folder nodes only).

• Add files…: Adds one or more file links to the current node (folder and root

nodes only).

• Create Folder: Creates a new folder (works for folder and root nodes only).

• Open corresponding folder: Opens the systems file manager with the folder

containing the selected file (works for file nodes only).

• Use node as template for batch processor...: Uses this node as a template for

the batch processor described later (works for file nodes only).

WMS-Software User Manual

25

4.5 Project Wizard

The project wizard provides a convenient way to create new projects. These newly

created projects contain all needed files for further data processing.

The wizard will ask for the following information:

• Author: The authors name.

• Description: The description of the project. Any text can be entered here.

• Project path: The path where the project is saved.

• SEI-file: The sensor information file used in the project.

• Geometry files: A set of geometry files.

• Measurement files: A set of *.mes files.

The detailed usage of the wizard is described below.

Figure 9: Welcome view.

First, you have to open the wizard. Click on the “New Project using wizard” button on

the welcome page.

Select a Project Template

After you have started the Project Wizard, you can choose between two types of project

templates: an empty project or a simple project skeleton. To create a project with all

the needed files, select the “Simple Project File” item and click Next.

Project configuration

On this wizard page, you have to enter the authors name and an optional description

text for the project. Click “Next” to continue.

The author and the description field can also be edited later in the project notes dialog

(Edit → Project notes...).

WMS-Software User Manual

26

Figure 10: Author and description fields.

Project File Path

On this page you can enter a path where the project file will be saved. Later, all files

added to the project will be saved relative to this project file. It’s recommended to use

a local file path and not a network share. Network shares are known to be slow when

working with the framework.

Figure 11: Project file path.

WMS-Software User Manual

27

Add sensor information file

To correctly extract the *.dat files from the measurement files, the framework needs to

know the position of each sensor within the sensor matrix. The position is described

in the SEI-file.

You have two options here:

• Load an already existing SEI-file from the local file system.

• Create a completely new one using the integrated SEI editor.

A detailed description the SEI editor can be found in the SEI Editor chapter (6.1). The

format of the SEI-file is described in chapter 7.

Figure 12: Use the SEI Editor or select a file from the file system.

Add geometry files

The framework does not only need to know the positions of the sensors within the

sensor matrix, it also needs to know the exact geometry of each sensor. In chapter 7 a

detailed description of the geometry file format can be found.

WMS-Software User Manual

28

Figure 13: Use GEO module or select a set of files from the file system.

The next dialog lets you run the geometry module dialog. It creates the geometry files

for the project. To do this you have to add a geometry file to the project. Like in the SEI

file wizard page, you have to options: Load an already existing set of geometry files

from the local file system or create a completely new set using the integrated geometry

module.

The parameters of the geometry module are described in the Module chapter. Click

“Run” to add them to the project.

A detailed description of the geometry module can be found in chapter 5.3.

WMS-Software User Manual

29

Figure 14: The geometry module in action.

Add measurement files

In the last step, the project wizard asks for measurement files to be added to the project.

You can select one or more files here. After this step the project will be generated.

WMS-Software User Manual

30

Figure 15: The wizard asks for measurement files.

4.6 Project Notes

To edit the project notes, click on Edit → Project notes... The dialog contains the name

of the author and general notes about the project.

Figure 16: Project description and author.

WMS-Software User Manual

31

4.7 Applying modules

Modules can be applied to files by right clicking on a project file and selecting “Apply

Module → …”. The framework shows only the modules which are compatible to the

current file type.

Figure 17: A typical module input mask (Void module in this example).

The module dialog shows an overview of all editable parameters. Each parameter can

be activated or deactivated by clicking on the left check box. Deactivated parameters

are not passed to the module.

The module dialog consists of several buttons at the bottom:

• Run and add files: Runs the module and adds the generated nodes to the

project.

• Add files without running module: Adds only the file nodes generated by the

module without running the module itself.

• Cancel: No module is applied to the file and the dialog closes.

4.8 Node views

The framework supports various visualization types. Which visualization is shown

depends on the selected file type. The integrated views and some commonly used

widgets are described below.

Colour Scale

The colour scale widget is used in several views to configure the currently selected

colour palette.

WMS-Software User Manual

32

Figure 18: Colour palette. The Jet colour palette is selected.

The widget shows a linear colour map defined by several control points. Colour

samples between these control points are lineary interpolated. They can be added,

removed or modified. You can edit control points by right clicking on them and

selecting “Edit control point...”.

New control points can be added by right clicking on the colour bar and selecting “Add

control point...”. Control points can also be deleted by right clicking on them and

clicking “Delete Control Point“. The sampling position of a control point can be

changed by dragging it to a different position.

The “Load…” and “Save…” button can be used to load and save a user defined colour

map:

• Load...: Loads a colour palette from the file system. The framework comes with

a set of predefined colour palettes (e.g. blue, blue inv, hot, jet, ocean, ...).

• Save...: Saves the current colour palette to a file.

3D Plot View

The 3D Plot shows a three-dimensional surface plot of the actual frame. You can use

the player component at the bottom to select individual frames. The “Play”-Button

starts an animation of the measured data.

WMS-Software User Manual

33

Figure 19: Typical surface plot.

The colour scale widget is described in section 4.8. The surface plot widget itself

supports the following functionality:

• Right click and drag: Moves the diagram.

• Left click and drag: Rotates the diagram.

• Mouse wheel: Zooms the diagram.

The control panel on the right next to the colour palette offers the following controls:

• Draw axis: Draws the plot axis.

• Draw grid: Draws the surface grid.

• Draw surface: Draws the coloured plot surface.

• Height scale: Scales the plot in the z-direction.

• Flip z-axis: Flips all z values.

4.9 Plot2D view

The Plot2D view shows a two-dimensional plot of the selected node.

The x-axis and y-axis for the diagram can be selected from the two drop-down menus.

Some files contain multiple tables or diagrams. The used data source can be selected

using the “Table” drop-down box.

With “Set zoom rectangle…” a distinct rectangular viewing area can be selected. Click

left and drag the mouse in the plot area to zoom in (a rubber band with the new zoom

area appears). Click right to restore the last zoom level.

WMS-Software User Manual

34

The diagram can be exported to different formats (e.g. as an image or a vector graphics)

by clicking “Export...”.

Figure 20: Plot2D view.

4.10 Slice view

The slice view is also a two-dimensional representation of the measurement data. It

supports the visualization of horizontal and vertical data slices.

Controls at the top:

• Geo mask: selects a geometry mask.

• Slice scale: Scales the two slices.

• Frames: Sets the number of frames shown in the slice view.

• Export: Exports the current view as a MPEG video or a sequence of images.

The user can choose between the top, horizontal or vertical view.

Controls at the bottom:

• -10, -1, +1, +10: Seeks to next or previous frame.

• Play: Plays an animation of the data.

• Frame: Sets the currently shown frame.

• Frame Skip: Sets the value to skip while playing the data.

WMS-Software User Manual

35

Figure 21: Sliced view.

You can edit colour palettes on the right side of the slice view. See 4.8 for more

information.

4.11 3D Voxel view
The 3D view shows an Iso surface representation of the data. The following controls are

available:

• View type: Iso surface: classical Iso surface lit by a virtual light; Transparent

iso surface: Same as iso but the far side is also shown.

• Invert: Inverts the data values: The liquid phase becomes the gas phase and

vice versa.

• Transparent: Shows the volume in transparent mode. Uses Beers Law to

calculate the attenuation of light through the volume.

• Perspective projection: Changes between an orthographic and a perspective

projection.

• Frame skip: Shows only the nth frame.

• Threshold: Sets the threshold (boundary) for the Iso surface.

• Ray step size: Step size of the ray-casting algorithm.

WMS-Software User Manual

36

• Slice Min/Max sliders: Cuts the volume into horizontal or vertical slices very

similar to the slice view.

• Flip X/Y/Z: Flips the axis of the volume.

• Flow: Selects the flow direction. Can be horizontal or vertical.

• Select background color...: Background color of the 3D view.

• Select foreground color...: Color of the Iso surface.

The “Export…” button supports MPEG video and image sequences, similar to the slice view.

Figure 22: Voxel 3D view.

4.12 Table view

Shows a tabular grid of the measurement data values. The shown record can be

selected in the drop-down box at the top of the view.

WMS-Software User Manual

37

Figure 23: Table View.

4.13 Batch Processor

The batch processor allows the user to use a sub-tree of a project as a batch template.

The batch dialog is separated into two panels. The left panel consists of a list of files

which are used as the input for the node tree on the right side. The tabular file list on

the left side also consist of an overview of all changed parameters for each batch item.

Controls at the bottom:

• Add files…: Adds a list of files to the batch table.

• Add all entries to project…: Adds all batch entries to the project tree. The

framework will ask for a new directory where to populates the new file nodes.

This new sub-tree can be huge if the file list is long!

• Add current entry to project…: Adds the currently edited batch entry to the

project.

• Run all…: Runs the batch processor for all files.

• Run current: Runs the currently selected batch entry.

Context menu entries for the batch list (right click on the file row):

WMS-Software User Manual

38

• Copy file entries: Copies batch items.

• Paste file entries: Pastes copied batch entries.

• Delete file entries: Deletes the current batch entry.

• Paste Parameters: Paste copied parameters.

• Add files…: Add more files to the batch list.

Additional context menu entries for the parameter rows (right click on the parameter row):

• Copy parameter: Copies the selected parameter.

• Paste parameter: Pastes the selected parameter to another batch entry.

• Delete parameter: Deletes the entry and restores it to the default value.

Figure 24: The batch processor view.

The tree view on the right side behaves similar to the project tree in the main window. The

following options are available:

• Apply module...: Applies a module to a file.

• Edit module parameters: Edits the parameter. This will change the parameter

table on the right side of the batch view.

WMS-Software User Manual

39

5 Modules for the Wire Mesh Sensor Framework
5.1 General remarks

All modules, explained in the following chapters, are written in Borland Delphi

Professional 7.0 and C++ and compiled for Microsoft Windows environment (XP or Server

2003 and higher). The program modules use parameters for data setup and work in

batch mode without user interfaces. The WMS framework helps to integrate the

different modules into one graphical user interface (GUI) allowing the user to specify

the necessary parameters in a table, pick and drag files into the command line, generate

batch files and use wild cards. For each module a *.minf (module information file) is

provided containing all required information about input and output parameters,

input and output files and paths. The framework is open for the integration of new

user defined modules (written in any compiler language), as long as the conventions

for the *.minf-files are fulfilled.

The following descriptions and the software modules are made for the case of a 64 x

64 wire-mesh sensor with a 64 x 64 electronic device. Most of the routines require

configuration files for the wire-mesh sensor geometry.

The names of the generated files consist of the same body like the measurement file

and the corresponding extension (see below). All routines described below use a *.log

file in ASCII-format to save information about the calculation (e.g. date, time, names

of the geometry files, thresholds, bubble numbers) and error messages.

NOTE: If the modules are used stand-alone, all parameters start with a hyphen

"-" (e.g.: "-fs:C:\Program Files\…").

5.2 FileConverter module, converts raw measurement files into
single sensor files

The FileConverter module is used to convert and extract the packed 12-bit file format

of the raw data *.mes into binary data files for each single sensor *.dat. The binary *.dat

files contain the measured values for all exported frames of a sensor with the

dimension M x N as 16-bit words in the following dimension. The example is given for

a 32 x 32 sensor:

Number of

data word

Data word description

0 Column 1 of row 1 of frame 1

1 Column 2 of row 1 of frame 1

2 Column 3 of row 1 of frame 1

… …

31 Column 32 of row 1 of frame 1

32 Column 1 of row 2 of frame 1

33 Column 2 of row 2 of frame 1

WMS-Software User Manual

40

… …

1023 Column 32 of row 32 of frame 1

1024 Column 1 of row 1 of frame 2

1025 Column 2 of row 1 of frame 2

… …

Therefore, the resulting file size is 2-byte x M x N x number of exported frames.

The FileConverter module requires the following parameters:

Parameter Description

fs Input file name (including path)

fe Sensor extraction info file name (*.sei) (including path)

sp Output path (optional)

o Output file name (optional)

f1 Frame start (optional)

f2 Frame end (optional)

j1 Point j1 coordinate (not required if *.sei-file is available)

k1 Point k1 coordinate (not required if *.sei-file is available)

j2 Point j2 coordinate (not required if *.sei-file is available)

k2 Point k2 coordinate (not required if *.sei-file is available)

The input file name is the name and path of the raw data file (*.mes) to be converted.

The sensor extraction file name (*.sei) specifies the SEI-file which contains all necessary

information about the single sensors location in the raw data matrix. This file is

automatically generated by the latest software version of the WMS200 device. In case

the SEI-file is not present it can be generated by the WMS framework. The SEI-file

defines the dimension of the raw data matrix (e. g. 64 x 128 for two 64 x 64 sensors

sampled in parallel mode) and specifies the start and end coordinates of the single

sensor. The following example of a SEI-file for a set of two 64 x 64 sensors illustrates

the file structure:

[MATRIX] section for raw data matrix

INFO=dual sensor vertical pipe DN200 free user defined text

HEIGHT=64 height of the raw data matrix

WIDTH=128 width of the raw data matrix

[OUTPUTFILENAMELIST] section for output files _

OUTPUTFILENAME1=_Sensor_1 appendix for the first sensor output file name

OUTPUTFILENAME2=_Sensor_2 appendix for the second sensor output file name

[SENSOR1] section describing first sensor

ID=00 additional ID number (no longer used)

NAME=Sensor_1 name of first sensor (same as file name extension)

J1=0 x-coordinate start point first sensor

K1=0 y-coordinate start point first sensor

J2=63 x-coordinate end point first sensor

K2=63 y-coordinate end point first sensor

TYPE=X "X" defines the first sensor of a set of two

RES1= not yet defined

SERIAL=1071 hardware serial number of the sensor

INFO=lower sensor free user defined text (e. g. sensor position)

[SENSOR2] section describing second sensor

WMS-Software User Manual

41

ID=00 additional ID number (no longer used)

NAME=Sensor_2 name of the sensor (same as file name extension)

J1=64 x-coordinate start point second sensor

K1=0 y-coordinate start point second sensor

J2=127 x-coordinate end point second sensor

K2=63 y-coordinate end point second sensor

TYPE=Y "Y" defines the second sensor of a set of two

RES1= not yet defined

SERIAL=1072 hardware serial number of the sensor

INFO=upper sensor free user defined text (e. g. sensor position)

The output path is optional. If it is not defined by the user, the same path as the input

file path is used. The other parameters correspond to the SEI-file. They are unused if

no SEI-file was selected. After the run of the FileConverter module, the number of *.dat

files specified in the SEI-files are generated.

5.3 Geo & GeoAdv module, generation of geometry configuration
files

The geometry of the used sensor is important for later calculations of void fraction

profiles, velocities etc. The geometry module calculates a set of geometry files for use

in other modules.

The module geo.exe requires the following parameters:

Parameter Description

cs WMS cross-section, (circular=circ, rectangular=rect)

id Sensor ID, user specified string (max. 12 character, optional)

nj Number of wires, direction j

nk Number of wires, direction k

pj Distance of wires in mm, direction j

pk Distance of wires in mm, direction k

ds Inner diameter of the wire-mesh sensor in mm (circular sensors only)

xx The distance without influence. This parameter is only available in the

GeoAdv module.

dj Width of the sensor, direction j (rectangular only)

dk Height of the sensor, direction k (rectangular only)

nr Number of ring shaped domains (see Fig. 1.4)

sp Output path for the calculated geometry files (optional)

Output files of the geometry module:

File Type Description

*.geo ASCII

(Matrix

file)

Geometry file for the measurement cross-section, e.g.

ID01_64x64_mj26_mk26_d1953_rad80.geo

description: 64 x 64 wires, 2.6 mm lattice spacing, 195.3 mm inner

diameter of the sensor; the file contains 64 x 64 values: 0 – means

that the measurement area around a crossing point is completely

outside the measuring area; value > 0: the part of the active

measurement area related to the general area of the senor (cp.

Figure 5)

WMS-Software User Manual

42

*.grd ASCII

(multiple

Matrices)

Geometry file for the ring-shaped domains, e. g.

ID01_64x64_mj026_mk026_d1953_rad80.grd

description: the same as before + 80 ring-shaped domains;

content: 80 tables with the same structure as before including the

weight coefficients for the single ring-shaped domains (cp. Figure

5).

*.gpl ASCII Log file of the geometry module, type ASCII, containing all

information about the used parameters and the resulting files.

5.4 Void module, calibration and void fraction distributions

The module Void requires the following parameter:

Parameter Description

fs Measurement data file including path (*.dat, *.v)

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

sp Output path (not required, if blank = path of the measurement file)

fc Calibration file, either water calibration file (*.dat) or calibration file

from previous run (*.uw)

hc Type of calibration ("y" - histogram calibration, "" - requires calibration file)

mf Measure frequency, default 2500 Hz

The void-module is able to handle uncalibrated measurement files (*.dat) or calibrated

void-files (*.v) as input files (fs). For the later the calibration procedure is skipped and

only void fraction profiles are calculated. The geometry file name (including path) has

to be specified as parameter fg. The module expects three geometry files (see 5.3).

Output path (sp:) is optional. For calibration of the measurement data a calibration file

has to be specified. This can be either a *.dat-file for pure water flow or calibration file

*.uw from a previous run of the module. The *.uw is generated by the first run of the

module from a water measurement file. The use of the *.uw file is recommended since

it is a short condensed file containing only averaged water values for each crossing

point. Instead of using a calibration file the user can specify the parameter hc. If this

parameter is set to “y” (yes) the program runs through the measurement file and

performs the histogram calibration routine (cp. 3.1).

ATTENTION: Histogram calibration has to be used very carefully! It can only be

applied, if the user is absolutely sure that there is really each crossing

point covered with water for many times during the measurement.

Therefore, histogram calibration cannot be applied for horizontal

stratified or annular flow situations for instance! It is advised to have

a look to the *.uwrad_* files, which are generated after a histogram

calibration. If the calibration values vary too much, the histogram

calibration has failed (cp. 3.1).

The program uses a noise filter (cp. 3.3) with a threshold. Either this limiting value is

set to a fixed value (e.g. 10%), which is the case if histogram calibration was used or it

WMS-Software User Manual

43

is taken as a result from the assessment of the frames of a calibration file (*.dat) if file

calibration has been activated.

The module first generates a binary file with e. g. 64 x 64 x 25000 void fraction values

(where 25000 is the number of measured frames), called v-file, stored in byte-format.

In this file, the void fraction values for each crossing point are stored as a number 0 to

100, corresponding to 0% and 100% respectively. Matrix points with the value 255 are

outside of the sensor area. Furthermore, the void module generates the following

averaged void fraction distributions:

File Type Description

*.epsxy ASCII

(Matrix)

The files contain the time averaged volumetric gas fractions in

percent as matrix for the cross-section (e. g. 64 x 64 values). The

points outside of the pipe cross-section have the value 0%

(Table 1).

*.epst ASCII

(Table)

It contains the cross-sectional averaged gas fractions over time

steps presented by two columns: The left column indicates the

time step in s while in the right column the cross-sectional void

fraction in percent is stored (Table 2).

*.epsrad_80 ASCII

(List of

Matrixes)

T time and azimuthally (inside of e. g. 80 ring-shaped domains)

averaged gas fraction; Column 1 contains the centre radii of the

respective ring in mm (see fig. 4). The right column contains the

appropriate gas fraction in percent (Table 3).

eps_all.asc ASCII

(Log)

Additionally, the module adds one row for each run in the

eps_all.asc file which includes the date and time of the

calculation + the name of the measuring file + the time and

cross-section averaged void fraction.

*.uw ASCII

(Matrix)

If the program was started with a calibration file (fc:) (*.dat) a

*.uw-file with the same name as the calibration file, containing

the values of the calibration matrix in dimensions x, y is

generated. This file can be used as input file for evaluation of

measurement data with the same calibration conditions (e. g. jW,

tW….). If no calibration file has been specified but the parameter

(hc:) has been set to “y” a *.uw-file with the name of the

measurement file (fs:) is generated respectively (Table 4).

.uwrad_ ASCII

(Table)

If histogram calibration is performed a *.uwrad_* file (e. g.

*.uwrad_80 for 80 rings) is generated, containing the

azimuthally averaged calibration values from the *.uw file. This

is very useful to check the quality of histogram calibration (cp.

1.1, Table 5).

The contents of the *.epsxy file:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 …
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.72
0 0 0 0 0 0 0 0 0 0 0 0 1.64 5.50
0 0 0 0 0 0 0 0 0 0 0 1.89 7.96 14.98
0 0 0 0 0 0 0 0 0 0 3.21 10.29 16.23 19.37
0 0 0 0 0 0 0 0 0 3.36 10.96 16.53 19.79 22.58
0 0 0 0 0 0 0 0 3.06 10.31 16.22 19.83 21.98 24.56
0 0 0 0 0 0 0 2.43 10.75 16.10 21.03 23.77 24.79 27.33

WMS-Software User Manual

44

0 0 0 0 0 0 0.64 8.40 15.66 20.19 23.17 26.07 28.06 29.02
0 0 0 0 0 0.10 7.42 15.18 20.52 23.23 25.85 28.05 29.74 30.76
0 0 0 0 0 5.60 14.37 19.71 23.72 26.08 27.78 30.12 32.35 33.23
0 0 0 0 2.80 12.20 18.78 23.12 25.53 28.71 30.65 31.53 34.36 33.29
0 0 0 0 7.11 15.93 20.69 24.06 28.32 29.65 32.58 33.63 35.15 35.39
0 0 0 3.03 13.68 19.19 23.29 27.39 30.63 31.34 33.41 34.47 36.25 37.33
0 0 0 8.57 18.04 21.84 25.67 29.48 31.95 33.86 35.02 36.34 37.60 39.05
0 0 3.61 14.25 21.12 26.01 28.41 31.09 32.86 35.34 36.78 38.41 38.73 40.35
0 0 7.43 18.02 24.67 27.91 29.51 32.74 33.86 36.45 38.01 39.03 38.98 41.17
0 1.93 11.77 20.31 25.91 29.55 30.74 33.69 35.55 37.08 37.29 39.58 41.10 41.33
0 4.43 15.19 22.52 26.78 29.13 31.32 34.86 35.92 38.10 38.94 39.15 40.66 40.18
0 8.20 18.29 23.26 27.12 30.03 32.36 35.57 35.98 38.31 39.15 40.46 41.13 40.92
0.53 11.17 20.14 24.69 28.03 30.29 33.01 36.54 36.15 38.33 39.93 39.64 40.67 41.12
2.93 12.80 21.76 26.42 29.93 31.73 33.68 35.76 36.78 38.02 38.96 39.83 40.68 43.07
4.96 15.00 21.77 27.13 31.22 32.95 34.64 37.44 38.07 38.06 39.51 40.67 41.61 42.90
7.33 16.06 23.12 28.44 31.97 33.95 35.89 36.59 37.47 38.11 39.19 40.84 41.45 41.37
9.04 17.42 23.93 28.37 31.82 33.62 35.70 37.70 37.65 38.20 39.35 41.14 43.38 43.27
10.21 18.41 24.72 27.19 30.58 33.17 35.88 37.14 37.54 38.92 39.92 41.87 44.15 43.09
11.26 19.42 24.76 27.60 30.63 32.71 35.78 37.24 37.77 39.13 40.00 42.07 42.89 43.71
11.82 19.83 24.52 27.07 30.50 32.88 35.10 35.86 36.71 38.12 40.98 42.84 43.83 44.20
…..

Table 1: Visualisation of time averaged gas fractions over a quarter of the measurement

cross-section from a *.epsxy file.

t eps(t)
s %
0.00040 34.80
0.00080 34.93
0.00120 35.07
0.00160 35.26
0.00200 35.42
0.00240 35.56
……

Table 2: Part of a *.epst file.

r eps(r)
mm %
0.6 12.173
1.8 12.173
3.1 12.313
4.3 12.612
5.5 12.748
6.7 13.074
……

Table 3: Part of a *.epsrad_80 file.

0 0 0 0 0 0 0 0 0 0 0 0 0 …

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.905
0 0 0 0 0 0 0 0 0 0 0 0.972 0.972
0 0 0 0 0 0 0 0 0 0 0.517 0.528 0.820
0 0 0 0 0 0 0 0 0 0.705 0.784 1.221 0.755
0 0 0 0 0 0 0 0 0.882 0.665 0.814 1.129 0.778
0 0 0 0 0 0 0 0.938 0.827 0.750 0.795 1.167 0.963
0 0 0 0 0 0 0.669 1.235 1.071 1.010 0.808 1.029 0.820
0 0 0 0 0 0 0.847 1.019 1.117 0.897 0.854 0.972 1.050
0 0 0 0 0 1.500 1.129 0.991 0.963 0.955 1.029 1.129 1.141
0 0 0 0 0.868 1.019 1.479 0.719 1.082 1.029 0.991 1.346 1.105
0 0 0 0 0.766 0.972 0.905 0.861 0.669 1.180 1.193 0.808 1.071
0 0 0 0.565 0.745 1.019 0.905 0.536 1.419 1.382 1.382 1.250 1.296
0 0 0 0.571 1.071 1.221 0.461 0.477 0.861 1.117 1.207 1.029 1.141
0 0 0.963 0.597 0.739 1.280 1.094 0.991 1.029 1.094 1.061 1.071 1.117
0 0 0.946 1.019 0.981 0.972 1.250 1.154 0.991 1.167 1.071 1.082 0.882
0 0 0.991 0.981 0.854 0.991 1.000 0.905 1.019 0.861 0.921 1.061 1.040
0 1.346 0.745 0.972 0.875 0.905 0.929 0.868 0.972 0.897 1.207 0.890 0.963
0 0.861 0.471 1.019 0.972 1.029 0.905 0.882 0.854 0.847 1.193 0.946 0.938
0 0.897 0.938 0.972 0.875 1.000 1.061 1.000 1.117 1.296 1.207 0.946 0.827
0.000 0.991 1.050 1.040 0.946 0.921 0.827 0.929 1.419 1.313 1.221 1.193 0.789
0.525 1.615 1.050 0.882 0.905 0.882 0.802 1.382 1.400 1.193 1.207 0.802 1.419
0.533 0.525 1.019 0.929 0.847 0.913 0.827 0.820 1.296 1.094 1.250 1.250 1.382
0.541 0.607 0.734 0.729 0.808 0.761 0.854 0.827 0.750 0.677 0.691 0.686 1.296
1.479 0.719 0.814 0.625 0.827 1.667 0.772 1.094 0.714 1.082 1.000 0.868 1.458
0.682 1.438 0.854 1.000 0.833 0.827 1.180 0.686 0.691 1.141 1.105 1.117 1.329
1.193 0.745 1.382 1.061 0.778 0.574 0.745 0.724 0.847 0.921 1.591 1.129 0.897
…

Table 4: Example of the calibration values for a part of the measurement cross-section

from a *.uw file.

0.6 2076.00
1.8 2076.00
3.1 2081.17
4.3 2090.73
5.5 2088.69

0.6 2.581
1.8 2.581
3.1 2.581
4.3 2.581
5.5 2.581

WMS-Software User Manual

45

6.7 2083.10
7.9 2087.58
9.2 2095.03
10.4 2107.30
11.6 2113.51
12.8 2111.34
14.0 2108.42
15.3 2107.56
……

Table 5: Examples for azimuthally averaged

calibration values (*.uwrad_80).

6.7 2.647
7.9 2.647
9.2 2.647
10.4 2.581
11.6 2.581
12.8 2.581
14.0 2.647
15.3 2.647
……

Table 6: Examples for azimuthally averaged

gas velocities (*.vel).

5.5 CapVoid Module

The CapVoid modules is used to calculate the mixing ratios of a two-phase flow for

capacitive measurements. The CapVoid module supports only the parallel model.

The module parameters are described in the following table:

Parameter Description

fs Input file name.

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

pl Low permittivity value. E.g. air has a permittivity of around 1.

ph High permittivity value. E.g. water at 20°C has a permittivity of around 80.

fl Low permittivity file.

fh High permittivity file.

mf Measure frequency. Default is 2500 Hz.

rp Radial profile output, use only for radial symmetric flow situations!

sp Output file path.

This module outputs several files listened in the table below:

File Type Description

*.epst ASCII

(table)

Mixing ratio over the whole measurement time for each frame.

*.epsxy ASCII

(single

matrix)

Averaged mixing ratio over the whole time.

*.epsrad ASCII

(table)

Radial mixing ratios as defined in the *.grd file.

*.v Binary

(8-bit

unsigned

integer)

The mixing ratio file calculated by the module. Values 0-100.

255 means invalid value.

5.6 CapVoid2 Module

The CapVoid & CapVoid2 modules are used to calculate the mixing ratios of a two-phase

flow for capacitive measurements. The new CapVoid2 module let the user decide which

mixing model he want to use (specified by the pm parameter). In contrast, the classical

CapVoid module supports only the parallel model.

The module parameters are described in the following table:

Parameter Description

WMS-Software User Manual

46

fs Input file name.

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

pm Permittivity model to use.

This parameter is only available in the CapVoid2 module!

The parameter must be of one of the following values:

• parallel

• series

• logarithmic

• maxwell-garnett-epsilon-low-is-dispersed

• maxwell-garnett-epsilon-low-is-continous

p Write permittivity output files. Can be “y” or ”n”.

pl Low permittivity value. E.g. air has a permittivity of around 1.

ph High permittivity value. E.g. water at 20°C has a permittivity of around 80.

fl Low permittivity file.

fh High permittivity file.

rp Radial profile output, use only for radial symmetric flow situations!

vf Use unclamped floating-point values. The calculated alpha value of the

mixture model is not clamped between 0 and 1. This option also writes

floating-point values to a *.fv file. Holdup values can therefore be > 100%

and < 0.0%.

th Threshold value. Any hold-up >= this threshold is set to 100%.

sp Output file path.

This module outputs several files listened in the table below:

File Type Description

*.epst ASCII (table) Mixing ratio over the whole measurement time for each

frame.

*.epsxy ASCII (single

matrix)

Averaged mixing ratio over the whole time.

*.epsrad ASCII (table) Radial mixing ratios as defined in the *.grd file.

*.v of *.fv Binary (8-bit

unsigned

integer

or 32-bit

floating point

value)

For 8-bit values: The mixing ratio file calculated by the

module. Values 0-100. 255 means invalid value.

For 32-bit floating point outputs: NaN means

invalid/undefined value.

*.pxy ASCII (table) Averaged permittivity over the whole measurement time.

*.p Binary (16-bit

unsigned

integer)

Contains the permittivity values calculated by the module.

The values are scaled by 100. This means that a value of

4576 is a permittivity of 45.76.

5.7 Velocity Module, calculation of the averaged local gas velocities

For the calculation of local gas phase velocities, the module velocity.exe can be applied.

It uses the Fast Fourier Transformation to make a fast cross-correlation between the data

of a set of two sensors in flow direction. The module requires the following parameters:

WMS-Software User Manual

47

Parameter Description

fs First sensor void file (*.v) (including path)

dc Distance between measurement planes in mm

fc Second sensor void file (*.v) (including path)

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

sp Output path (optional)

mf Measurement frequency (optional, if not set 2500 Hz is used as default)

After calculation the velocity module delivers the following two files:

File Type Description

*.vel ASCII

(Table)

Contains a table with two columns. The left shows the centre

radii of the ring-shaped domains in mm and the right presents

the associated azimuthally averaged local gas velocities in m/s

(Table 6),

*.velxy ASCII

(Matrix)

Matrix in sensor dimension x, y, containing the calculated time

averaged velocity value of each individual mesh point (x, y) in

m/s. The quality of the local velocities may be insufficient due to

the bad statistics. Therefore, it is recommended to check these

files very carefully before using for scientific data evaluation.

Points outside of the pipe cross-section are marked by 0 whereas

velocities with an absolute value of zero are denoted by 0.000

(Table 8).

5.8 BubIdent Module, identification and labelling of single bubbles

The BubIdent module is used to identify and separate single bubbles from the three

dimensional void fraction files (*.v). The method of bubble identification has been

described in detail in chapter 3.4. The module requires the following parameters:

Parameter Description

fs Source void file for bubble identification (*.v) (including path)

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

dl Threshold level for bubble search algorithm (optional 0..30, default 10)

Changing the threshold level (dl) makes significant changes to bubble sizes and is only

recommended for experienced users! Standard value of 10% gives reliable results for

water gas two phase flows!

0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.921

0 0 0 0 0 0 0 0 0 0 0 0 0.905 1.141

0 0 0 0 0 0 0 0 0 0 0 0.972 0.972 0.600

0 0 0 0 0 0 0 0 0 0 0.517 0.528 0.820 0.660

0 0 0 0 0 0 0 0 0 0.705 0.784 1.221 0.755 0.761

0 0 0 0 0 0 0 0 0.882 0.665 0.814 1.129 0.778 0.772

0 0 0 0 0 0 0 0.938 0.827 0.750 0.795 1.167 0.963 1.180

0 0 0 0 0 0 0.669 1.235 1.071 1.010 0.808 1.029 0.820 0.913

0 0 0 0 0 0 0.847 1.019 1.117 0.897 0.854 0.972 1.050 1.221

0 0 0 0 0 1.500 1.129 0.991 0.963 0.955 1.029 1.129 1.141 1.313

0 0 0 0 0.868 1.019 1.479 0.719 1.082 1.029 0.991 1.346 1.105 0.972

0 0 0 0 0.766 0.972 0.905 0.861 0.669 1.180 1.193 0.808 1.071 1.061

0 0 0 0.565 0.745 1.019 0.905 0.536 1.419 1.382 1.382 1.250 1.296 1.207

WMS-Software User Manual

48

0 0 0 0.571 1.071 1.221 0.461 0.477 0.861 1.117 1.207 1.029 1.141 1.235

0 0 0.963 0.597 0.739 1.280 1.094 0.991 1.029 1.094 1.061 1.071 1.117 1.154

0 0 0.946 1.019 0.981 0.972 1.250 1.154 0.991 1.167 1.071 1.082 0.882 0.938

0 0 0.991 0.981 0.854 0.991 1.000 0.905 1.019 0.861 0.921 1.061 1.040 1.180

0 1.346 0.745 0.972 0.875 0.905 0.929 0.868 0.972 0.897 1.207 0.890 0.963 1.154

0 0.861 0.471 1.019 0.972 1.029 0.905 0.882 0.854 0.847 1.193 0.946 0.938 1.094

0 0.897 0.938 0.972 0.875 1.000 1.061 1.000 1.117 1.296 1.207 0.946 0.827 1.265

0.000 0.991 1.050 1.040 0.946 0.921 0.827 0.929 1.419 1.313 1.221 1.193 0.789 1.280

0.525 1.615 1.050 0.882 0.905 0.882 0.802 1.382 1.400 1.193 1.207 0.802 1.419 1.280

0.533 0.525 1.019 0.929 0.847 0.913 0.827 0.820 1.296 1.094 1.250 1.250 1.382 1.329

0.541 0.607 0.734 0.729 0.808 0.761 0.854 0.827 0.750 0.677 0.691 0.686 1.296 1.154

1.479 0.719 0.814 0.625 0.827 1.667 0.772 1.094 0.714 1.082 1.000 0.868 1.458 1.313

0.682 1.438 0.854 1.000 0.833 0.827 1.180 0.686 0.691 1.141 1.105 1.117 1.329 1.167

1.193 0.745 1.382 1.061 0.778 0.574 0.745 0.724 0.847 0.921 1.591 1.129 0.897 0.882

…

Table 7: Example of the gas velocity values for a part of the measurement cross-section

from a *.velxy file.

As an output file the module generates a binary file of the same dimension as the void

file containing biunique identification numbers (32-bit signed integer) for all voxels

belonging to the same bubbles:

File Type Description

*.b Binary

(32-bit

unsigned

integer)

Three dimensional matrix of bubble identifiers.

Table 8: Example of the gas velocity values for a part of the measurement cross-section

from a *.velxy file.

5.9 BubProp Module, bubble property analysis

The next step in the data evaluation is the definition of bubble properties. For this, it is

necessary to finish all aforementioned operations, i.e. to have the *.v and *.b files. The

BubProp module needs the *.v file as well as the *.b file for calculation. Only one of

these has to be specified. The module expects the related file with the same name in

the same folder, if one of the files is missed an error message is generated in the *.log-

file. Additionally, the geometry files have to be specified (fg). The algorithms for

property determination and calculation are described in detail in chapter 3.5. The

module requires the following parameters:

Parameter Description

fs Name and path of source files for bubble properties (*.v, *.b)

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

mf Measurement frequency (optional, if not set 2500 Hz is used as default)

The program delivers the results in form of a table which contains one row with the

properties for each bubble after the head.

File Type Description

WMS-Software User Manual

49

The data are stored in an ASCII file (*.a) containing this table (Table 9 exemplifies the

beginning of a *.a file):

bb im jm km Ifront jfront kfront iback jback kback rmi rmj rmk rmxy max v rv n deps rxymax
[-] [ms] [mm] [mm] [ms] [mm] [mm] [ms] [mm] [mm] [ms] [mm] [mm] [mm] [%] [ms*mm²] [s3(ms*mm²)] [-] [%] [mm]
1 3.6 18.7 132.2 0.4 15.0 120.0 9.6 21.0 135.0 5.4 13.1 13.0 18.4 100 1348.93 6.85 888 0.0004527 9.031
2 18.0 98.2 103.1 0.4 21.0 102.0 52.0 36.0 135.0 23.9 97.0 72.5 121.1 100 304569.44 41.74 135812 0.1022072 55.256
3 6.0 165.9 44.1 0.4 147.0 51.0 15.6 177.0 48.0 9.2 15.6 13.4 20.6 100 3991.92 9.84 2134 0.0013396 12.017
4 8.5 27.5 66.7 0.4 18.0 66.0 16.0 42.0 72.0 8.7 16.3 12.9 20.8 100 3754.53 9.64 1964 0.0012599 10.822
5 14.9 93.6 25.1 9.2 93.0 24.0 19.2 99.0 24.0 5.7 10.2 8.4 13.2 100 1180.37 6.56 667 0.0003961 7.183
6

Table 9: Part of the table with bubble properties in a *.a-file.

The abbreviation in the table head stands for:

Parameter Unit Description

bb - Bubble identification number,

im ms Coordinates of the centre of the bubble in i – flow direction and j,

k – measurement cross-section, jm mm

km mm

ifront ms Coordinates of the bubble front,

jfront mm

kfront mm

iback ms Coordinates of the bubble back,

jback mm

kback mm

rmi ms Moments of the bubble in i – flow direction and j, k –

measurement cross-section, rmj mm

rmk mm

rmxy mm Radial moment of the bubble in measurement cross-section

plane,

max % Maximum void fraction of the bubble,

v ms*mm2 Bubble volume,

rv f(ms*mm2) Radius of a volume equivalent sphere,

n - Number of volume elements occupied by the bubble,

deps % Part of the void fraction per bubble referring to the total flow

volume,

rxymax mm Maximal circle equivalent radius of the bubble in the

measurement plane.

Table 10: Description of the single bubble parameters in the *.a-file.

In the second line of Table 9 the dimension units for the bubble properties are given.

It is indicated once again that with the bubble characteristics contrary to the gas

fraction calculation, the index i refers to the serial number of the frames (time axis or

z-direction) and the indices j and k apply to the measurement cross-section,

respectively. All characteristics in direction of the time axis are given in ms. The

conversion of the time dimension in a geometrical dimension (mm) is possible using

*.a ASCII (Table) Table with bubble properties for each single detected bubble

with the bubble number "bb" with the following content (each

parameter describes is saved in one column of the *.a-file)

WMS-Software User Manual

50

the velocity information defined with the velocity module (see 5.5) from the datasets

of two wire-mesh sensors series installed.

5.10 BubSizeDis Module, Calculation of Bubble size distributions

If it is necessary to analyse bubble size distributions, this can be done with the unit

bubsizedis.exe. It requires the *.v, *.b and *.a files. One of these files has to be specified

as first parameter (fs). The module expects the related files with the same name in the

same folder, if one of the files is missing an error message is generated in the *.log-file.

Additionally, the geometry files have to be specified (fg). Optionally, a velocity file

(*.vel) can be specified as additional parameter (fc). In this case, the required

geometrical data in the bubble property table (*.a file) is converted into real 3D

information, e. g. the volume equivalent diameter of the bubble is converted from
3 2*ms mm into mm. If there is no *.vel-file specified, the superficial gas velocity (jg)

can be entered in m/s. The overall measurement time is calculated from measurement

frequency (mf:) which can be defined by the user (default 2500 Hz) and the total frame

number. Furthermore, the inner diameter of the sensor and the number of ring-shaped

domains is determined from the geometry files.

After finishing calculations, the program returns a *.his_lin and a *.his_log file, which

contain the linear and the logarithmic bubble size distributions. Both files are ASCII

files. exemplifies a logarithmic bubble size distribution.

 d hdxy hdrelxy hdnxy hdv hdrelv hdnv
 [mm] [%/mm] [1/mm] [1/mm/s] [%/mm] [1/mm] [1/mm/s]
 …
 2.50 0.0696 0.3416 2882.00 0.0288 0.1412 1971.00
 2.60 0.0664 0.3261 2503.00 0.0382 0.1875 2331.00
 2.70 0.0848 0.4165 3009.00 0.0461 0.2264 2549.00
 2.80 0.0940 0.4612 3055.00 0.0545 0.2674 2716.00
 2.90 0.1056 0.5183 3241.00 0.0627 0.3077 2825.00
 3.00 0.1212 0.5949 3533.62 0.0730 0.3586 2951.55
 3.11 0.1288 0.6324 3376.85 0.0849 0.4166 3103.95
 3.22 0.1276 0.6265 2992.83 0.0976 0.4789 3203.98
 3.33 0.1402 0.6880 2968.25 0.1098 0.5388 3234.49
 3.45 0.1568 0.7696 3042.70 0.1197 0.5876 3194.02
 3.57 0.1563 0.7674 2786.43 0.1380 0.6773 3306.48
 3.70 0.1726 0.8473 2829.40 0.1506 0.7395 3257.98
 3.83 0.1688 0.8285 2546.78 0.1624 0.7972 3157.65
 3.97 0.1919 0.9422 2660.76 0.1723 0.8459 3037.73
 4.11 0.2001 0.9824 2567.87 0.1905 0.9349 3022.71

Table 11: Detail of a bubble size distribution for logarithmic bubble class widths.

The single columns in Table 11 include the following information:

Parameter Unit

d mm

hdxy %/mm

hdrelxy 1/mm

hdnxy 1/mm/s

hdv %/mm

hdrelv 1/mm

hdnv 1/mm/s

WMS-Software User Manual

51

• d: Bubble diameter in mm.

• hd: Gas fraction of the bubbles of this class referring to bubble class width in

%/mm

• hdrel: hd related to the total gas fraction in 1/mm

• hdn: Number of bubbles in the respective class referring to the class width and

the total

In both files these three columns (distributions) are available related to the area

equivalent bubble diameter for the largest cross-section area of the bubble in the

measurement plane (xy) and basing on the volume equivalent bubble diameter (v),

respectively. In the first column of Table 11 shows the arrangement of the bubble

classes. Independent of the logarithmic distributions, for bubble diameters less than 3

mm a linear width of 0.1 mm is used. Only on bubble diameters larger than 3 mm the

logarithmic increase of the bubble class width takes effect.

The linear distributions contained in the *.his_lin files have the same structure apart

from the difference of linear increase of the bubble class width (normally HZDR use

0.25 mm) over the complete interval of bubble classes.

5.11 MixCalib Module, calibrate mixing measurements

The MixCalib module calculates the calibration matrices m and n from a set of given

calibration files and their corresponding conductivity values. See chapter 3.7 for more

detailed explanation what this module does.

The module parameters are described in the following table:

Parameter Description

fs First input file

c0 Conductivity of the first file in µS/m.

fg Name and path of a geometry file (*.geo, *.grd, *.gpl)

f1 Second calibration file.

c1 Conductivity of the second calibration file.

f2 … f7 3rd, 4th, 5th, .. calibration files.

c2 … c7 3rd, 4th, 5th, .. conductivity values in µS/m.

sp Output path to use.

o Output file name to use.

Output files:

File Type Description

*.mixm ASCII

(Matrix)

The m matrix of the calibration.

*.mixn ASCII

(Matrix)

The n matrix of the calibration.

*.mixcd ASCII

(Matrix)

Contains the coefficient of determination for each crossing

point of the calibration.

WMS-Software User Manual

52

*.mixtab ASCII

(Table)

Contains a graph for each measured ADC value and it

conductivity.

5.12 MixCond Module, calculation the conductivity of a mixture

The MixCond module uses the matrices m and n from the MixCalib module to calculate

the conductivity of a measurement. You can find a detailed explanation of this module

in chapter 3.7.

The module parameters are described in the following table:

Parameter Description

fs Input file

fg Name and path of a geometry file (*.geo, *.grd, *.gpl)

fm The m matrix file.

fn The n matrix file.

sp Output path to use.

o Output file name to use.

Output files:

File Type Description

*.cond Binary

(16-bit

unsigned

integer)

The conductivity in µS/m.

5.13 MixRatio Module, calculating mixing ratios

The MixRatio module calculates mixing ratios from an input file, a base reference file

and a tracer fluid conductivity to determine the mixing the matrices m and n from the

MixCalib module to calculate the conductivity of a measurement. See chapter 3.7 for

more in depth information.

The module parameters are described in the following table:

WMS-Software User Manual

53

Parameter Description

fs Input file

fg Name and path of a geometry file (*.geo, *.grd, *.gpl)

fb Base reference conductivity file (*.cond).

cb Base reference conductivity value in µS/m if fb is not set.

ft Tracer conductivity file (*.cond).

ct Tracer conductivity value in µS/m if ft is not set.

am Averaging method to use. This option is only used for the base and the

tracer file. Can be either:

average_frames_and_crossing_points: Averages all frames and

crossing points to a single value used for mixing ratio calculation.
or

average_frames: Averages all frames but not the crossing points to

calculate the mixing ratio calculation.

sp Output path to use.

o Output file name to use.

Output files:

File Type Description

*.mrat Binary

(8-bit

unsigned

integer)

The calculated mixing ratios in percent (0-100%). 255 means

invalid value.

5.14 Transform module, applying various transform operations

The Transform module is used for applying various transformations. It supports rotate,

mirror and transpose operations. Furthermore, an interpolation method can be used

for the rotate operation. You can choose between nearest and bilienar interpolation. The

selected angle of rotation is always counter-clockwise and defined in degrees between

0° and 360°.

The module parameters are described in the following table:

Parameter Description

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

s Start frame is the first frame to process.

e End frame is the last frame to process.

op Transform operation. The input data can be transposes, mirrors or rotated.

m Interpolation method. Can be nearest or bilinear.

mf Measurement frequency (optional, if not set 2500 Hz is used as default)

Output files:

File Type Description

*.dat Binary

(16-bit

Transformed data file.

WMS-Software User Manual

54

unsigned

integer)

Warning: Be careful with this module! Especially the rotate option is a

destructive operation. It's recommend to use this module only for

visualization purposes and not for any further data processing.

5.15 Trim Module, trimming the size of files

This module was developed to trim wrongly extracted data files. It extracts a

rectangular subsection from the input data files and writes it to a newly generated

output file. A start and an end frame can also be chosen.

The module parameters are described in the following table:

Parameter Description

s Start frame is the first frame to process.

e End frame is the last frame to process.

x1 Start x is the x position of the upper left trim coordinate.

y1 Start y is the y position of the upper left trim coordinate.

x2 End x is the x position of the lower right end coordinate.

y2 End y is the y position of the lower right trim coordinate.

sp Output directory (optional)

o Output file name

Output files:

File Type Description

*.dat Binary

(16-bit

unsigned

integer)

Trimmed data file.

Warning: Only use this module as a last resort! It was mainly written for data

forensics. E.g. when you have a set of wrongly extracted data files and

the original measurement files were lost or hard to reclaim. Always use

the original measurement files to regenerate your data files using the

FileConverter module.

5.16 FixUp Module, fixing faulty pixels

The FixUp module is another module that can be used for data forensics. It fixes single

pixels as well as rows and columns of faulty pixels. The information about faulty pixels

can be supplied by an error mask file or directly by specifying the module parameters.

The error mask file is a simple ASCII text file very similar to the content of the geometry

files. The file contains a matrix with only 3 possible values:

• A 0 means that the pixel is not part of the measuring area and is therefore

ignored by the fixing algorithm.

WMS-Software User Manual

55

• A value of 2 means that the pixel is inside the measuring area and a non-faulty

pixel.

• A value of 3 indicates that the pixel is faulty and can be replaced by the fixing

algorithm.

A typical error mask for an 8 x 8 sensor could look like that:

0 0 0 1 1 0 0 0

0 0 1 1 1 2 0 0

0 2 2 2 2 2 2 0

1 1 1 1 1 2 1 1

1 1 1 1 1 2 1 1

0 1 1 1 1 2 1 0

0 0 1 1 1 2 0 0

0 0 0 1 1 0 0 0

Where column 5 (start counting from 0) and row 2 were fixed by the module. If you

don't have an error matrix file, you can manually enter the rows, columns and single

pixels using the hi, vi and pi parameters.

A complete list of module parameters is described in the following table:

Parameter Description

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

s Start frame is the first frame to process. If nothing was entered the

whole file is processed.

e End frame is the last frame to process. If nothing was entered the whole

file is processed.

ee The error mask file as described above.

hi Fix horizontal pixel data is used to fix rows of faulty pixels. Rows are

separated with semicolons. The value is a zero-based index. If you

want to fix horizonal line 4 and 8, the hi parameter is “4;8”

vi Fix vertical pixel data is used to fix columns of faulty pixels. Columns

are separated with semicolons. The value is a zero-based index. If you

want to fix vertical line 7, 9 and 11, the vi parameter is “7;9;11”

pi Fix single pixels. Single pixels are separated with semicolons.

Coordinates are separated with commas. If you want to fix a pixel at

position 4,5 and another one at position 6,7, the pi parameter is
“4,5;6,7”

m Interpolation method. Can be median or mean.

fs Output directory to use.

o Output file name to use.

Output files:

File Type Description

*.dat Binary

(16-bit

unsigned

integer)

The fixed data file.

WMS-Software User Manual

56

Warning: Only use this module as a last resort! It was mainly written for data

forensics. E.g. when you have a set of wrongly extracted data files and

the original measurement files were lost or hard to reclaim. Always use

the original measurement files to regenerate your data files using the

FileConverter module.

5.17 NRemoval Module
The Noise Removal module interpolates/fixes faulty or noisy pixels using a noise reference

file. It’s very similar to the FixUp module which uses an error mask (can be parameter

defined or a selected mask file) for all frames.

The parameters used by the module are described in the following table:

Parameter Description

fg Geometry file

fe Noise file (can be a *.dat, *.cdat or *.v file)

m Method to interpolate neighbours (can be ‘all_26’, ‘local_8’ or ‘time_2’)

th Threshold. Every value in the Noise file >= threshold will be fixed.

s Start frame is the first frame to process.

e End frame is the last frame to process.

sp The output directory (optional).

o Th output file name to be used.

The module currently supports 3 different interpolation methods. These methods are

description in the following table:

Method Description

all_26 All 26 neighbours of a single pixel including previous and next frame.

local_8 Only the 8 neighbour pixels of the current frame. No interpolation in

the time domain is done.

time_2 No local interpolation. Only interpolate the next and the previous pixel

in the time domain.

The output files of the module:

File Type Description

*.dat, *.cdat

or

*.v

Binary (16-bit

unsigned integer

or 8-bit value)

Filtered output file.

5.18 Reduce Module, reduces multiple frames to a single frame

This module reduces *.dat, *.cdat and void files. It writes the median or mean for each

cross section within a chosen window size to an output file.

The module parameters are described in the following table:

Parameter Description

s Start frame is the first frame to process.

e End frame is the last frame to process.

op Filter operation to be used. Can be “mean” or “median”.

WMS-Software User Manual

57

f Window size in frames.

sp The output directory (optional).

o Th output file name to be used.

Output files:

File Type Description

*.dat, *.cdat Binary

(16-bit

unsigned

integer)

Reduced data file.

*.v Binary

(8-bit

unsigned

integer)

Reduced void file.

5.19 ImageMaker module

The Imagemaker module has been designed to export frames from uncalibrated sensor

measurement files (*.dat) as well as calibrated void fraction data (*.v) as bitmap series.

The user can specify the files to be exported (fs:) and the output path (sp:). The start

and end frame for the bitmap export (f1:) and (f2:) and an integer zoom factor (z:). If a

*.dati-file with the same name as the *.v or *.dat file exists in the same folder the sensor

dimension is extracted from this file, otherwise the user must specify the width and

height of the sensor with the parameters (j1:) and (k1:) respectively. The file names of

the created bitmaps consist of the original file name the frame number in the original

data set and the extension (*.bmp) optional the original file name can be changed also

into a user defined string (o:).

5.20 OptFlow module

The optical flow module calculates axial and tangential velocities from *.dat files and

saves them in several output files.

The complete list of module parameters is described in the following table:

Parameter Description

fs Input file name

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

mf Measurement frequency. Default is 2500 Hz.

fc Calibration file. If not set parameter fu is used.

fu UW-file

al Optical flow alpha value. Default is 0.01

oi Number of optical flow iterations.

fl Filter type: none, max or ac.

ai Iterations for ac filter.

sp Output directory.

o Output file name

WMS-Software User Manual

58

The optical flow module generates several files containing the calculated velocities of

the input data. These files are:

File Type Description

*.va Binary

(signed 16

bit integer)

Absolute velocity calculated from vx and vy.

*.vx Binary

(signed 16

bit integer)

Velocity in x direction.

*.vy Binary

(signed 16

bit integer)

Velocity in y direction.

*.vt Binary

(signed 16

bit integer)

Tangential velocity

*.vr Binary

(signed 16

bit integer)

Radial velocity

*.vei ASCII

(Ini)

Info file for velocity files. Contains the size and number of frames.

5.21 Histogram Module

The Histogram module was designed to be used in conjunction with the OptFlow

module. This module may be extended to support more file types in the future.

The complete list of parameters is described in the following table:

Parameter Description

fs Input file name. Currently only the output files of the OptFlow module

are accepted (*.va, *.vx, *.vy, *.vr, *.vt).

fg Name and path of geometry files (*.geo, *.grd, *.gpl)

s Start frame

e End frame

bi Minimum bin interval.

ba Maximum bin interval.

b Number of bins within this interval.

fl Filter type: none, max or ac.

sp Output directory.

o Output file name.

The optical flow module generates a files containing the calculated histogram of the

input data:

File Type Description

*.hist ASCII

(tabular

file)

Histogram generated from the input data.

WMS-Software User Manual

59

WMS-Software User Manual

60

6 Editors of the Wire Mesh Sensor Framework
The framework comes with

6.1 SEI Editor

This editor allows the user to create SEI-files (sensor extraction information files). The

SEI-file specifies the location of one or more sensors inside the measurement domain

matrix.

You can start the SEI-Editor by clicking Tools → SEI Editor. This will run the editor as

a standalone tool. No files were added to the project tree! It's also possible to start the

SEI-Editor by right clicking on a project folder or the main project node itself. This will

add a newly generated *.sei file to the project. Select Create file(s) → SEI Editor in the

context menu.

The editor window consists of two panels. The left contains the definition of the

measurement domain and a list of all sensor definitions inside the matrix. The right

panel contains a graphical representation of the whole measurement matrix.

The info field in the left panel is a user defined string to identify the experiment/sensor

arrangement. The matrix width and height is the dimension of the measured *.mes file.

This is the width and height of the whole sensor matrix.

Table 12: The SEI Editor of the Wire Mesh Sensor Framework.

In the sensor table a user defined ID (12 characters), a sensor Name (added to the file

name), the Serial number and a free Info text can be added and edited. The Type is used

to specify the first and second sensor of a double sensor arrangement (e.g. velocity

calculations). Typically, "X" for the first and "Y" for the second sensor is used

respectively. The parameters J1, K1, J2 and K2 specify the start and end coordinates of

WMS-Software User Manual

61

a single sensor within the whole measurement matrix. By clicking of one of the lines

in the table, the highlighted sensor is shown in the right graphical visualization area.

The tool bar at the top of the window consists of the following buttons:

• New: Creates a new SEI-file. If the current one was modified, it asks to save the

current SEI file.

• Open: Opens an existing SEI-file.

• Save: Saves the current SEI-File.

• Save as...: Saves the current SEI-file under a new file name.

• Exit: Closes the editor. The editor asks to save the current SEI-file if it was

modified.

These buttons can also be found in the File menu at the top of the window.

6.2 Mask Editor

This editor allows the user to edit complex mask files for the wire mesh sensor. In

contrast to the standard Geometry module it allows much more control over the

generated geometry mask files.

You can start the Mask-Editor by clicking Tools → Mask Editor. This will run the editor

as a standalone tool. Like in the SEI-Editor no files were added to the project tree! You

can also start the editor by right clicking on a project folder or the root node itself. This

will add a newly generated *.wmmask file to the project.

WMS-Software User Manual

62

Table 13: Mask Editor of the Wire Mesh Sensor Framework.

The tool bar at the top of the window consists of the following buttons:

• New: Creates a new mask file. If the current one was modified, the editor asks

you to save the file.

• Open: Opens an existing mask file. Asks when the current file was modified.

• Save: Saves the current mask file.

• Save as...: Saves the current mask file under a new file name.

• Zoom in: Zooms the current mask in.

• Zoom out: Zooms the current mask out.

• Reset Zoom: Resets the zoom level.

• Configure: Configures the current sensor layout. It's possible to set the number

of wires in x and y direction and the distance between the wires.

• Exit: Closes the editor. The editor asks to save the current mask if the file was

modified.

To create a new mask file, click on the New button in the toolbar or File → New …. A

layout dialog is shown (see

Figure 25). You can enter the number of wires in x and y direction. Also the distance

between a pair for wires can be entered. The circular sensor check box lets you define

whether the sensor is a circular or a rectangular one. Selecting the circular sensor will

WMS-Software User Manual

63

show a circular mask in the sensor view. The note field can be used for short user

defined notes.

Figure 25: New layout dialog.

The tool bar at the left side of the window consists of a set of different masking

primitives:

• Elliptical mask: Creates an elliptical mask.

• Rectangular mask: Creates a rectangular mask.

By clicking on them a dialog is shown. Here you can enter the initial parameters for a

new mask primitive. You can select between millimetres and wire units (multiples of

wire distances). Also the x, y position and the size of the mask element can be entered.

Subtractive masks are used to cut out regions from non-subtractive masks.

The docking window on the right contains a list of all mask primitives inside the

measurement area. They can be edited by right clicking on them.

 Figure 26: Context menu for a mask primitive.

The context menu exposed is shown in

WMS-Software User Manual

64

 Figure 26 and exposes the following menu entries:

• Delete: Deletes the mask element from the measurement area.

• Change Properties…: Changes the properties of the mask element.

• Move Up: Moves the element one level up in the Z direction.

• Move Down: Moves the element one level up in the Z direction.

• Bring to Front: Brings the element to the front. All other mask obejct are now

behind this object.

• Move to Background: Moves the element to the background. All other mask

elements are now behind this one.

The same menu is exposed when right clicking on the object in the mask view.

WMS-Software User Manual

65

7 Internal Data Formats

This chapter describes the internal data formats used by the framework. These are

configuration file formats like Module information files, Editor information files,

Template configuration files and other files the framework is able to read and show.

See the individual chapters for more information about the used formats.

7.1 Module Information Files

Module information files are used to describe the command line interface of an

external module. They are automatically read at the start-up of the framework. The

detailed structure is described in the following sections.

General Structure

MINF-files are ordinary INI-files with some extensions. They are divided in several

sections and the general syntax/structure looks like that:

[Section 1]

Key1=Value1

Key2=Value2

[Section 2]

Key1=Value3

Key2=…

[Section 3]

Key1=Value4

Key2=…

…

The individual sections of MINF-file are described below.

Module Section

Contains general information about a module. The keys in the Module section are

described in the following table:

Key Description

Name Name of the module.

Info Short information text of the module.

Icon Icon of the module. Currently not in use.

Executable The name of the executable to start. Note: There is no need to add an *.exe

suffix to the file name. It's automatically added.

HelpFile Additional help file of the module.

A typical Module section looks like that:

[Module]

Name=Transform Module

Info=Applies various transformations on *.dat files.

Icon=

Executable=transform

HelpFile=

WMS-Software User Manual

66

Parameters Section

This section contains a list of all parameters in the module with a short

name/description string. Usually this section looks like that:

[Parameters]

fs=Input file name

sp=Output path

pa=My module parameter

ParameterTypes Section

In the new framework parameters are typed. This section is used to define a type for

each individual parameter:

Type Description

file Just a simple file name without a path.

filedir This is a full file path with directory and file name.

dir Just a directory without a file name.

int Integer. The framework represents them internally as 64 bit integers.

double The parameter is a floating point parameter. The framework represents

them as 64 bit floating point values (IEEE 754).

string The parameter is a string.

enum Defines an enumeration type. This is used to define a selection between

different options. The framework uses a drop-down box in the module

dialog for this type.

Typical application:

[ParameterTspes]

fs=filedir

fe=int

sp=dir

ParameterEnabled

This section defines if a parameter is either in use or not by default. Its represented by

an boolean value. Typically, this section looks like that:

[ParameterEnabled]

fs=true

fe=false

sp=true

ParameterDefaults

Defines the parameters default values.

[ParameterDefaults]

f=”myfile”

op=false

t=1.245

ParameterConstraints

This section describes the constraint system for a module. Multiple constraints can be

combined with a semicolon. An example usage is shown below:

WMS-Software User Manual

67

[ParameterConstrainst]

f=parameter_is_required();file_must_exist()

op=in_range(-20, 20);

t=any_of(“do”, “re”, “mi”);includes_parameter(“ip”)

ip=relates_to_parameter(GreaterEqual, “op”);includes_parameter(“t”)

A list of possible constraints is listened in the table below. The nomenclature of the

function signatures is described in chapter 7.5.

Constraint Compatible

types

Description

parameter_is_required() all The parameter is required. It's not possible to

unselected it in the module dialog.

Parameters:

• None

file_must_exist() filedir The selected file path must exist.

Parameters:

• None

file_must_by_of_type(

<ext1>:string,

[<ext2>:string,…]

)

file, filedir The file must have a certain file extension.

Parameters:

• ext1: First file extension to check

• ext2: Second file extensions to check

• …
Examples:

• file_must_by_of_type(“bmp”, “png”) →

File must be of type bmp or png.

dir_must_exist() dir The selected directory must exist.

Parameters:

• None

in_range(

<min>:(int, double),

<max>:(int, double)

)

integer,

double

The selected value must be in range min and max.

Parameters can be of type double or integer.

Parameters:

• min: Minimal value.

• max: Maximal value.

• …
Examples:

• in_range(0, 10) →Accepts only values

between 0 and 10.

any_of(

<e1>:enum,

[<e2>:enum, …]

)

enum The enumeration must be of one of the passed values.

Parameters:

• e1: First enumeration value

• e2: Second enumeration value

• …

Examples:

• any_of(“linear”, “bilinear”) → The

enumeration must be either of linear or

bilinear.

WMS-Software User Manual

68

strlen(

<min>:(int),

<max>:(int)

)

string String must me at least min characters long but not

longer than max characters.

Parameters:

• min: Minimum length of string.

• max: Maximal length of string.

• …
Examples:

• strlen(4, 6) → Strings like “hello”, and

“sensor” are accepted, but not “car” and

“framework”.

excludes_parameter(

<param1>:string,

[<param2>:sting …]

)

all Excludes a list of given parameters if the actual

parameter is selected.

Parameters:

• param1: First parameter to exclude-

• param2: Second parameter to exclude.

• …
Examples:

• excludes_parameter(“a”,”b”) → This

parameter cannot be selected with

parameter a and b.

includes_parameter(

<param1>:string

[<param2>:string, …]

)

all Includes a list of given parameters if the actual

parameter is selected.

Parameters:

• ext1: First file extension to check

• ext2: Second file extensions to check

• …

Examples:

• includes_parameter(“a”, “b”) → This

parameter must be selected with parameter

a and b.

relates_to_parameter(

<op>:(Greater, Less,

GreaterEqual,

LessEqual),

<param>:string

)

integer,

double

Defines a relation between two parameters.

Parameters:

• op: Operation: op can be of Greater, Less,

GreaterEqual or LessEqual.

• param: Parameter name.

Examples:

• relates_to_parameter(GreaterEqual, “a”) →

The actual parameter must be greater or

equal than parameter a.

OutputFiles

This section defines the output files of module. The structure is very similar to the

constraint section. Every key in this section contains a list of files to generate.

[OutputFiles]

<File1>=<expression>

<File2>=<expression>

WMS-Software User Manual

69

<File3>=...

The names of the file keys are user defined. The expression placeholder contains a

string generation expression. If the expression generates an empty string, no file will

be populated. See Command Reference in chapter 7.5 for more information about

string generation expression. All expressions returning a string[] or string can be

used here.

7.2 Editor Information files

The framework does not only allow you to integrate command line style applications

like modules. It also allows you to integrate graphical applications to edit certain files

in your project (see chapter 5.21 for the build in editors). The format is described in

this chapter.

Key Description

Name Name of the module.

Info Short information text of the module.

Icon Icon of the module. Currently not in use.

Executable The name of the executable to start. Note: There is no need to add an

*.exe suffix to the file name. It's automatically added.

HelpFile Additional help file of the module.

InputFileTypes A list of files supported by the editor.

A typical editor information file looks like that:

[Editor]

Name=Experimental Mask Editor

Info=Edits Mask Files (currently in experimental state)

Icon=

Executable=maskeditor

HelpFile=

InputFileTypes=wmmask

All editor information files are automatically read from the editor sub-directory during

the start-up of the framework.

7.3 Template information files

The Wire Mesh Sensor Framework supports user defined project templates. A template

can be used as basic skeleton for a new project. All needed files are saved in the

templates sub-directory. Each template consists of two files: a configuration file and a

script file.

• <name>.tinf

• <name>.tscript

The placeholder <name> can be any identifier. The template information file describes

the input parameters and some general meta information about the template (name of

the template, needed files, descriptions, ...). The script file on the other hand contains

WMS-Software User Manual

70

a list of commands to execute after the user enters the parameters and finishes the

wizard dialog.

Template Section

Templates are also defined using the well-known INI syntax. The template sections

typically look like that:

[Template]

Name=Empty project.

Info=An empty project template. Contains no files.

Key Description

Name Name of the templates. This is shown in the list box of the first wizard

page.

Info Short description text of the template. This text is shown below the

template selection when you click on a template.

Script Name of the script file without extension

Parameters Section

This section contains a list of all parameters in the template with a short

name/description. Usually this section looks like that:

[Parameters]

SeiFile=SEI file name

GeoFiles=Geometry files

MesFiles=MES files

ParameterDescriptions

[ParameterDescriptions]

SeiFile=A sensor information file

GeoFiles=A set of geometry files

MesFiles=One or more measurement files

ParameterTypes

[ParameterTypes]

SeiFile=FileOrEditorOutput

GeoFiles=FilesOrModuleOutput

MesFiles=MultiFilePaths

Type Description

FileOrEditorOutput The wizard asks for a file or an editor to create this file.

FilesOrModuleOutput The wizard will ask for a set of files or a module to generate

these files.

MultiFilePaths Asks for one or more files.

ParameterValues

Contains default values for a file parameter. Useful in combination with an editor.

[ParameterValues]

SeiFile=Sensor.sei

ParameterExtensions

Comma separated file extensions. This section describes the supported file types for

each file parameter.

[ParameterExtensions]

SeiFile=sei

WMS-Software User Manual

71

GeoFiles=geo,grd,ggd,gpl

MesFiles=mes,ces

ParameterModules and ParameterEditors

These two sections allow you to select the editor or module you want to use for a file

parameter. The key is the parameter identifier and the key value is the module

identifier you want to use. If you want to know more about integrating modules to the

framework see section 7.1.

[ParameterModules]

GeoFiles=geo_adv

[ParameterEditors]

SeiFile=sei

7.4 Template Script Files

The template director contains another file called the template script file. It contains a

list of commands to execute when a new project is generated.

A simple script file looks like that:

add_folders("", "SEI File");

add_folders("", "Geometry Files");

add_folders("", "Measurement Files");

add_folders("", "Batch Files");

add_files("SEI File", value("SeiFile"));

add_files("Geometry Files", value("GeoFiles"));

add_files("Measurement Files", value("MesFiles"));

Template Command Description

add_folders(

 <dest_dir>:(string,

string[]),

 <new_dir>:(string,

string[]),

)

Adds a list of new directories to an existing directory.

Parameters:

• dest_dir: Existing directory where to create

a new directory. The root directory is an

empty string “”.

• new_dir: Name of the new directory.

add_files(

 <dir>:string,

 <file>: (string,string[]))

Adds a list of files to a project directory.

Parameters:

• dir: Existing directory where to add the

files.

• file: List of files to add.

value(

 <identifier>:string)

The value of the parameter entered by the user in the

wizard dialog.

Parameter:

• identifier: The identifier is the key in the

parameters section of the editor

information file.

Examples

Adds two subfolders (sub01 and sub02) to the „MESFolder/MES01“ folder:

WMS-Software User Manual

72

add_folders(strlist(“MESFolder“, “MES01“), strlist(“sub01“, “sub02“));

Adds a new sub-folder named sub folder to the root directory.

add_folders(““, “sub folder“);

Adds two files (01.mes and 02.mes) to the folder “MESFolder/my mes files“:

add_files(strlist(“MESFolder“, “my mes files“), strlist(“01.mes“, “02.mes“));

Adds the file (file.mes) to the root directory:

add_files(““, “file.mes“);

Adds the files from the template parameter mes_files to the “MES files“ directory:

add_files(“MES files“, value(“mes_files“));

7.5 Command Reference

This section describes all commands that can be used in the Constraints and the

OutputFiles section of the module information file.

Some notes on the nomenclature used here: functions have return values and a set of

parameters. These functions are strongly typed and the used types are described in the

following table:

Type Description

int This is a positive or negative integer. Internally this is a 64 bit number.

double This is a floating point number. It's internally represented as a 64 bit

number.

int[] This is a list of integers.

double[] This is a list of doubles.

string A string.

string[] List of strings.

bool Boolean value. Can be true or false.

All commands are described by their signature:

name(<value> : <type>[, ...]) : <return_type>

The name is the identifier of the function. Value the name of the function parameter

and type is the parameter type described in the table above.

Some functions support more than one parameter type. For these parameters the

following syntax is used:

value : (<type1>, <type2>)

This means that a function parameter value can be of type type1 or type2.

Optional parameters are marked with “[“ and “]” braces.

Function Description
and(
<a1>:bool
[, <a2>:bool, ...]

Return the disjunction and conjunction of boolean

values.

Parameters:

WMS-Software User Manual

73

):bool

or(
<a1>:bool
[, <a2>:bool, ...]
):bool

• a1, a2, ...: List of booleans

Return value:

• boolean
Examples:

• and(true, true) → true
• or(true, false) → true

buildpath(
 <dir>:(string, string[]),
 <file>:(string, string[]),
 <ext>:(string, string[]),
):(string, string[])

Builds a complete path from a directory, a file name

and an extension string using the native path separator.

Parameters:

• dir: Directory

• file: File base name

• ext: File extension.
Return value:

• string: if all parameters are strings

• string[]: if one parameter is a list of strings.
Example:

• buildpath(“C:\dir”, “myfile”, “.png“)
→ “C:\dir\myfile.png”

concat(
 <s1>:(string, string[]),
 [<s2>,]
):(string, string[])

Concatenates strings and lists of strings.

Parameters:

• s1, …: A list of strings.
Return value:

• string, when s1 … sN are strings.

• string[], when one of the parameters is a list

of strings.
Example:

• concat(“img_“, range(1, 10), “.bmp“) →
[“img_1.bmp“, “img_2.bmp“, …
“img_10.bmp“]

compare(
 <op>:(Equal, Greater, Less,
 LessEqual,
 GreaterEqual),
 <v1>:(int, double, String),
 <v2>:(int, double, String)
):bool

Compares two integer or double values. If the two

parameters are strings this function does a

lexicographical compare.

Parameters:

• op: Compare operation. Must be on of

Equal, Greater, Less, LessEqual,

GreaterEqual.

Return value:

• boolean
Example:

• compare(Less, param(“i”), param(j))
digits(
 n:int
):int

Returns the number of digits of a given integer number.

This is useful in combination with the format function

(see width parameter).

Parameters:

• n: Integer

Return value:

• Number of digits as an integer

WMS-Software User Manual

74

Example:

• digits(1) → 1
• digits(100) → 3

filebase(
 f:string
):string

Returns the base name of a file.

Parameters:

• f: Full file path.
Return value:

• string: Base file name.
Example:

• filebase(“c:\test\file.txt”) → “file”
fileext(
 f:string
):string

Returns the file extension of a file.

Parameters:

• f: File name.

Return value:

• string: File extension.

Example:

• fileext(“c:\test\file.txt”) → “txt”
filedir(
 f:string
):string

Returns the directory of a given file path.

Parameters:

• f: File name
Return value:

• string: Directory name

Example:

• filedir(”c:\test\file.txt”) →
“c:\test”

format(
 <value>:(int, int[]),
 [<width>:int,
 <fillchar>:string]
):(string, string[])

format(
 <value>:(double, double[]),
 <format_type>:string,
 <prec>:int]
):(string, string[])

Formats an integer and double values. Also arrays of

integers an arrays of doubles are supported.

Parameter:

• value: Numerical value to format.

• width: Width of the integer to format. Using

the digits() function here is recommended in

the most cases.

• fillchar: Filling character.

• format_type: Formatting style for double

values: 'f' (decimal) or 'e' (exponential).

• Prec: Precision describes the number of

decimals.
Return value:

• Returns a string or a list of string depending on

the input parameters.

Example:

• format(10, 3, “0“) → „010“.

• format(13.5931, ‘f’, 2) → 13.59
ini(
 <filename>:string,
 <section>:string,
 <key>:string,

Reads a key from an INI file.

Parameter:

• filename: Complete path to the INI file.

• section: Section name

WMS-Software User Manual

75

 <type>:(Int, String, Double)
):(int, double, string)

• key: Key name.

• type: Defines how to read the value from the INI

file. Parameters are: Int, String and Double.

Return value:

• The value of the key in the defined section.

Example:

• Reads an integer value from the file “tst.ini”:
inifile(“test.ini“, “section“, “key“, Int)

max(
 <a>:(int, double),
 :(int, double)
) :(int, double)

Return the maximum of two values.

Parameters:

• a, b: The two values to compare. Can be a

double or an integer value.
Return values:

• an integer or double depending on the

parameter type.
Example:

• max(39, 55) → 55
min(
 <a>:(int, double),
 :(int, double)
):(int, double)

Return the minimum of two values.

Parameters:

• a, b: The two values to compare. Can be a

double or an integer value.
Return values:

• An integer or double depending on the

parameter type.

Example:

• min(-4, 2) → -4
param(
 <name>:string
):(int, double, string)

Returns the value of the parameter. Can be an integer, a

double or a string.

Parameter:

• name: Name of the parameter.
Return values:

• an integer, double or string depending on

the parameter type.
Example:

• param(“j”)
range(
 <start>:int,
 <end>:int
):int[]

Generates a list of values within a given range.

Parameter:

• start: Starting value.

• end: End value.
Return values:

• int[]: Integer list from start to end.
Example:

• range(0, 10) → [0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10]

strlist(
 <s1>:string,
 [<s2>:string, ...]

Generates a list of strings from the parameters.

Parameter:

• s1: First string

WMS-Software User Manual

76

):string[] • s2, ...: Second string, ...

Return values:

• string[]: String list from start to end
Example:

• strlist(“a”, “b”, “c”)

• Returns [“a”, “b”, “c”]
gplfile(
 <file_name>,
 <section>
 [, <type>:(Int, String,
 Double)]
):(int, string, double)]

Reads the parameter section from a gpl file.

Parameters:

• file_name: Full path to the *.gpl file name

• section: Name of the value in the parameter

section

• type: Can be Int, String or Double.

Return values:

• Parameter value from the gpl file.
Example:

• gplfile(“param”, Int)
inuse(
 <param>:string
):boolean

Checks if a parameter is marked active.

Parameter:

• param: Parameter name
Return values:

• Is true if parameter is check or false if

parameter is not checked.

Example:

• inuse(“o”)
not(
 :bool
):boolean

Negates the input boolean value.

Parameter:

• b: Boolean value to negate
Return values:

• negation of b

Example:

• not(true) → false
outfile():string Returns the output file name. If the o parameter of the

module is set it return the value of this parameter. If it’s

not set it returns the input files (fs parameter of the

module) base name.

Parameter:

• None

Return values:

• File name as string

Example:

• outfile() → Returns “file“ for example.
outdir():string Returns the output directory. Returns the value of the o

parameter of the module. If this value is not set it reads

the directory from the fs parameter of the module.

Parameter:

• None

WMS-Software User Manual

77

Return values:

• Output directory string.

Example:

• outdir() → Returns “C:\myprojects” for

example.
pathsep():string Returns the platforms native path separator: This can be

a backslash “\” on Windows or a slash “/” on UNIX

like platforms.

Parameter:

• None
Return values:

• string:
Example:

• pathsep() → “\“
seifile(
 <file_name>:string
):string[]

Returns a list of sensor file names from a SEI file.

Parameters:

• file_name: Path of the SEI file name.

Returns:

• A list of output files.
if(
 <cond>:bool,
 <true_cond>,
 <false_cond>)

Parameter:

• cond: Boolean condition

• true_cond: Expression to evaluate when cond is

true.

• false_cond: Expression to evaluate when cond is

false.

Return value:

• The return value of either true_cond or

false_cond.
Example:

• if(compare(Greater, 50, 10), 42, 24) →
42

7.6 Examples
Creating a list of images

This expression creates a list of image file names:

concat(“img_“, range(param(“s“), param(“e“)), “.bmp“)

The result is (assuming that s=1 and e=4):

[“img_1.bmp”, “img_2.bmp”, “img_3.bmp”, “img_4.bmp”]

Alternatively, with leading zeros as fill characters:

concat(“img_“, format(range(param("s"), param("e")), digits(param("e")), "0")), “.bmp“)

This will generate the following list of bitmap file names (assuming that s=8 and e=12):

[“img_08.bmp”, “img_09.bmp”, “img_10.bmp”, “img_11.bmp”, “img_12.bmp”]

file:///C:/myprojects

WMS-Software User Manual

78

Testing flags

Tests if a certain parameter was set. If the parameter gv is in use a file named file.ve will

be generated, otherwise no file will be generated:

if(inuse(“gv”), “file.ve“, ““)

7.7 Readable File Formats

The framework supports the following file types:

• ces, mes, dat, cdat, v, sei, dati, inf, tab, epst, epsr, epsrad, uwrad, vel

• txt, log

• gpl, geo, grd, ggd

• uw, epsxy, velxy,

• hist

• bmp

• va, vx, vy, vt, vr, vi, ev

Table Files

Table files are plain ASCII files. Each line represents a tabular record. The first two

lines a reserved for the row name and the used unit. Columns are whitespace

separated. Floating point numbers are in international format (decimal points instead

of commas). This is equivalent to the ISO C standard for the “C” locale.

To describe a two column table with a time stamp in seconds and a holdup

measurement in %, a typical tabular file could look like that (here an *.epst file):

 t eps(t)

 s %

 0 90.4379

0.0004 90.8505

File types which use the tabular file format are:

• *.epst

• *.epsr

• *.epsrad

• *.uwrad

• *.vel

The framework uses the 2D plot view to visualize tabular files.

Matrix Files

Matrix files are ordinary ASCII files very similar to tabular files. Each line represents a

row in a matrix. Columns are whitespace separated. Floating point numbers are

encoded with the ISO “C” locale standard.

WMS-Software User Manual

79

0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 1 1 ...

0 0 0 0 0 1 4 6 ...

0 0 0 0 1 2 1 1 ...

0 0 0 1 3 2 3 1 ...

0 0 1 2 7 6 1 4 ...

0 1 2 4 5 6 1 1 ...

...

File types which use the matrix file format are:

• *.geo

• *.ggd

• *.uw

• *.epsxy

• *.velxy

• *.err

It’s also possible to save multiple matrices in a file. Multiple matrices are separated by

an empty line.

File types which are in the multi matrix file format are:

• *.grd

The Wire Mesh Sensor Framework uses the 3D Plot view and the Table view to visualize

tabular files.

Binary Files

Binary files contain a byte stream of continuous frames. The data is saved in Little-

Endian Format. Each data field can be one of the types listened in Table 14 depending

on the file type:

Type Size

(bytes)

Description File types

byte/unsigned

char

1 Single byte value. Values range from 0

to 255.

*.v

uint16/unsigned

short

2 Two bytes unsigned integer value.

Values range from 0 to 216-1.

*.cdat; *.dat

int16/short 2 Two bytes signed integer. Values range

from -215 to 215-1.

uint32/unsigned

int

4 Four bytes unsigned integer. Values

range from 0 to 232-1.

*.b

int32/int 4 Four bytes signed integer. Values range

from -231 to 231-1.

float 4 Four bytes single precision floating

point value (IEEE 754).

*.vx; *.vy, …

Table 14: Used data formats in the framework.

WMS-Software User Manual

80

The following table shows the structure of a binary file. The real data offset in bytes

must be calculated by multiplying the offset with the size in Table 14.

Data Offset

(multiple of data

words!)

Frame Column Row Description

0 0 0 0 Start of the first line of

the first frame.

1 0 1 0

… 0 … 2 … 0 …

width 0 0 1 Start of the second line of

the first frame.

width + 1 0 1 1

… 0 … 2 … 1 …

width x height 1 0 0 Start of the first line of

the first frame.

width x height + 1 1 1 0

… 1 … 2 … 0 …

2 x width x height 2 0 0

… 3 … 1 … 0

3 x width x height 0

… … … …

num_frames x

width * height - 1

num_frames - 1 width -1 height -1 Last data value in

stream.

Usually these binary files are bundled with an information file.

WMS-Software User Manual

81

8 Summery

The software algorithms described in this document have been implemented for the

purpose of data evaluation of wire mesh sensor data. The single executables have been

originally designed for stand-alone execution from the DOS command line or via a

batch script. Recently the wire mesh sensor frame work has been launched to integrate

these single modules under a graphical user interface, to allow the user to specify the

parameters and file settings in a usual WINDOWS® software surface. Over more, the

framework allows the users to implement their own software code and integrate the

new modules into it due to a "module information file" specifying the required

parameters, input and output files.

This is the first step to user-friendly homogeneous wire mesh sensor data evaluation

software. We hope that this package will enable our scientific partners and customers

to proceed their wire mesh sensor data unaffiliated.

WMS-Software User Manual

82

9 References

[1] M. J. Da Silva, „Impedance Sensors for Fast Multiphase Flow Measurement and

Imaging,“ TUD Press, Dresden, 2008.

[2] J. Huhn und J. Wolf, Zweiphasenströmung gasförmig/flüssig, Leipzig: Fachbuchbverlag

Leipzig, 1975.

[3] H.-M. Prasser, E. Krepper und D. Lucas, „Evolution of the two-phase flow in a vertical

tube - decomposition of gas fraction profiles according to bubble size classes using wire-

mesh sensors,“ International Journal of Thermal Sciences 41, pp. 17-28, 2002.

[4] H.-M. Prasser, D. Scholz und C. Zippe, „Bubble size measurement using wire-mesh

sensors,“ in Flow Measurement and Instrumentation 12, 2001, pp. 299-312.

[5] H.-M. Prasser und M. Beyer, „Bubble recognition algorithms for the processing of wire-

mesh sensor data,“ in paper:S7_Thu_B_50, Leipzig, 09.-13.07.2007.

[6] H.-M. Prasser, M. Beyer, H. Carl, A. Manera, H. Pietruske und P. Schütz, „Experiments

on upwards gas/liquid flow in vertical pipes,“ FZD-482, Dresden, 2007.

